Blog

Level Up with HackerEarth

Where innovation meets insight.
Explore expert perspectives, emerging tech trends, and real-world stories in coding, hiring, AI, and hackathons. Whether you're building, hiring, or learning — this is your go-to hub for sharp insights and practical knowledge from across the global developer ecosystem.
Featured and trending

Stay Ahead with the HackerEarth Blog

Dive into the latest in tech innovation, industry updates, and thought leadership. Discover what’s shaping the future — one post at a time.
Arrow Left
Arrow right

Vibe Coding: Shaping the Future of Software

A New Era of Code Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change Discover how vibe coding is reshaping software development. Learn about its benefits, challenges, and what it means for developers in the AI era.
Author
Vishwastam Shukla
Calendar Icon
June 25, 2025
Timer Icon
3 min read

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

How Candidates Use Technology to Cheat in Online Technical Assessments

Discover common technologies used by candidates for cheating in online assessments. Explore effective prevention methods like proctoring, AI monitoring, and smart test formats.
Author
Nischal V Chadaga
Calendar Icon
June 25, 2025
Timer Icon
3 min read

Impact of Online Assessments in Technical Hiring


In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers.

The ease and efficiency of virtual interviews, take home programming tests and remote coding challenges is transformative. Around 82% of companies use pre-employment assessments as reliable indicators of a candidate's skills and potential.

Online skill assessment tests have been proven to streamline technical hiring and enable recruiters to significantly reduce the time and cost to identify and hire top talent.

In the realm of online assessments, remote assessments have transformed the hiring landscape, boosting the speed and efficiency of screening and evaluating talent. On the flip side, candidates have learned how to use creative methods and AI tools to cheat in tests.

As it turns out, technology that makes hiring easier for recruiters and managers - is also their Achilles' heel.

Cheating in Online Assessments is a High Stakes Problem



With the proliferation of AI in recruitment, the conversation around cheating has come to the forefront, putting recruiters and hiring managers in a bit of a flux.



According to research, nearly 30 to 50 percent of candidates cheat in online assessments for entry level jobs. Even 10% of senior candidates have been reportedly caught cheating.

The problem becomes twofold - if finding the right talent can be a competitive advantage, the consequences of hiring the wrong one can be equally damaging and counter-productive.

As per Forbes, a wrong hire can cost a company around 30% of an employee's salary - not to mention, loss of precious productive hours and morale disruption.

The question that arises is - "Can organizations continue to leverage AI-driven tools for online assessments without compromising on the integrity of their hiring process? "

This article will discuss the common methods candidates use to outsmart online assessments. We will also dive deep into actionable steps that you can take to prevent cheating while delivering a positive candidate experience.

Common Cheating Tactics and How You Can Combat Them


  1. Using ChatGPT and other AI tools to write code

    Copy-pasting code using AI-based platforms and online code generators is one of common cheat codes in candidates' books. For tackling technical assessments, candidates conveniently use readily available tools like ChatGPT and GitHub. Using these tools, candidates can easily generate solutions to solve common programming challenges such as:
    • Debugging code
    • Optimizing existing code
    • Writing problem-specific code from scratch
    Ways to prevent it
    • Enable full-screen mode
    • Disable copy-and-paste functionality
    • Restrict tab switching outside of code editors
    • Use AI to detect code that has been copied and pasted
  2. Enlist external help to complete the assessment


    Candidates often seek out someone else to take the assessment on their behalf. In many cases, they also use screen sharing and remote collaboration tools for real-time assistance.

    In extreme cases, some candidates might have an off-camera individual present in the same environment for help.

    Ways to prevent it
    • Verify a candidate using video authentication
    • Restrict test access from specific IP addresses
    • Use online proctoring by taking snapshots of the candidate periodically
    • Use a 360 degree environment scan to ensure no unauthorized individual is present
  3. Using multiple devices at the same time


    Candidates attempting to cheat often rely on secondary devices such as a computer, tablet, notebook or a mobile phone hidden from the line of sight of their webcam.

    By using multiple devices, candidates can look up information, search for solutions or simply augment their answers.

    Ways to prevent it
    • Track mouse exit count to detect irregularities
    • Detect when a new device or peripheral is connected
    • Use network monitoring and scanning to detect any smart devices in proximity
    • Conduct a virtual whiteboard interview to monitor movements and gestures
  4. Using remote desktop software and virtual machines


    Tech-savvy candidates go to great lengths to cheat. Using virtual machines, candidates can search for answers using a secondary OS while their primary OS is being monitored.

    Remote desktop software is another cheating technique which lets candidates give access to a third-person, allowing them to control their device.

    With remote desktops, candidates can screen share the test window and use external help.

    Ways to prevent it
    • Restrict access to virtual machines
    • AI-based proctoring for identifying malicious keystrokes
    • Use smart browsers to block candidates from using VMs

Future-proof Your Online Assessments With HackerEarth

HackerEarth's AI-powered online proctoring solution is a tested and proven way to outsmart cheating and take preventive measures at the right stage. With HackerEarth's Smart Browser, recruiters can mitigate the threat of cheating and ensure their online assessments are accurate and trustworthy.
  • Secure, sealed-off testing environment
  • AI-enabled live test monitoring
  • Enterprise-grade, industry leading compliance
  • Built-in features to track, detect and flag cheating attempts
Boost your hiring efficiency and conduct reliable online assessments confidently with HackerEarth's revolutionary Smart Browser.

Talent Acquisition Strategies For Rehiring Former Employees

Discover effective talent acquisition strategies for rehiring former employees. Learn how to attract, evaluate, and retain top boomerang talent to strengthen your workforce.
Author
Nischal V Chadaga
Calendar Icon
June 25, 2025
Timer Icon
3 min read
Former employees who return to work with the same organisation are essential assets. In talent acquisition, such employees are also termed as ‘Boomerang employees’. Former employees are valuable because they require the least training and onboarding because of their familiarity with the organization’s policies. Rehiring former employees by offering them more perks is a mark of a successful hiring process. This article will elaborate on the talent acquisition strategies for rehiring former employees, supported by a few real-life examples and best practices.

Why Should Organizations Consider Rehiring?

One of the best ways of ensuring quality hire with a low candidate turnover is to deploy employee retention programs like rehiring female professionals who wish to return to work after a career break. This gives former employees a chance to prove their expertise while ensuring them the organization’s faith in their skills and abilities. Besides, seeing former employees return to their old organizations encourages newly appointed employees to be more productive and contribute to the overall success of the organization they are working for. A few other benefits of rehiring old employees are listed below.

Reduced Hiring Costs

Hiring new talent incurs a few additional costs. For example, tasks such as sourcing resumes of potential candidates, reaching out to them, conducting interviews and screenings costs money to the HR department. Hiring former employees cuts down these costs and aids a seamless transition process for them.

Faster Onboarding

Since boomerang employees are well acquainted with the company’s onboarding process, they don’t have to undergo the entire exercise. A quick, one-day session informing them of any recent changes in the company’s work policies is sufficient to onboard them.

Retention of Knowledge

As a former employee, rehired executives have knowledge of the previous workflows and insights from working on former projects. This can be valuable in optimizing a current project. They bring immense knowledge and experience with them which can be instrumental in driving new projects to success.Starbucks is a prime example of a company that has successfully leveraged boomerang employees. Howard Schultz, the company's CEO, left in 2000 but returned in 2008 during a critical time for the firm. His leadership was instrumental in revitalizing the brand amid financial challenges.

Best Practices for Rehiring Former Employees

Implementing best practices is the safest way to go about any operation. Hiring former employees can be a daunting task especially if it involves someone who was fired previously. It is important to draft certain policies around rehiring former employees. Here are a few of them that can help you to get started.

1. Create a Clear Rehire Policy

While considering rehiring a former employee, it is essential to go through data indicating the reason why they had to leave in the first place. Any offer being offered must supersede their previous offer while marking clear boundaries to maintain work ethics. Offer a fair compensation that justifies their skills and abilities which can be major contributors to the success of the organization. A well-defined policy not only streamlines the rehiring process but also promotes fairness within the organization.

2. Conduct Thorough Exit Interviews

Exit interviews provide valuable insights into why employees leave and can help maintain relationships for potential future rehires. Key aspects to cover include:
  • Reasons for departure.
  • Conditions under which they might consider returning.
  • Feedback on organizational practices.
Keeping lines of communication open during these discussions can foster goodwill and encourage former employees to consider returning when the time is right.

3. Maintain Connections with Alumni

Creating and maintaining an alumni association must be an integral part of HR strategies. This exercise ensures that the HR department can find former employees in times of dire need and indicates to former employees how the organization is vested in their lives even after they have left them. This gesture fosters a feeling of goodwill and gratitude among former hires. Alumni networks and social media groups help former employees stay in touch with each other, thus improving their interpersonal communication.Research indicates that about 15% of rehired employees return because they maintained connections with their former employers.

4. Assess Current Needs Before Reaching Out

Before reaching out to former employees, assess all viable options and list out the reasons why rehiring is inevitable. Consider:
  • Changes in job responsibilities since their departure.
  • Skills or experiences gained by other team members during their absence.
It is essential to understand how the presence of a boomerang employee can be instrumental in solving professional crises before contacting them. It is also important to consider their present circumstances.

5. Initiate an Honest Conversation

When you get in touch with a former employee, it is important to understand their perspective on the job being offered. Make them feel heard and empathize with any difficult situations they may have had to face during their time in the organization. Understand why they would consider rejoining the company. These steps indicate that you truly care about them and fosters a certain level of trust between them and the organization which can motivate them to rejoin with a positive attitude.

6. Implement a Reboarding Program

When a former employee rejoins, HR departments must ensure a robust reboarding exercise is conducted to update them about any changes within the organization regarding the work policies and culture changes, training them about any new tools or systems that were deployed during their absence and allowing them time to reconnect with old team members or acquaint with new ones.

7. Make Them Feel Welcome

Creating a welcoming environment is essential for helping returning employees adjust smoothly. Consider:
  • Organizing team lunches or social events during their first week.
  • Assigning a mentor or buddy from their previous team to help them reacclimate.
  • Providing resources that facilitate learning about any organizational changes.
A positive onboarding experience reinforces their decision to return and fosters loyalty.

Real-Life Examples of Successful Rehiring

Several companies have successfully implemented these strategies:

IBM: The tech giant has embraced boomerang hiring by actively reaching out to former employees who possess critical skills in emerging technologies. IBM has found that these individuals often bring fresh perspectives that contribute significantly to innovation7.

Zappos: Known for its strong company culture, Zappos maintains an alumni network that keeps former employees engaged with the brand. This connection has led to numerous successful rehiring instances, enhancing both morale and productivity within teams6.

Conclusion

Rehiring former employees can provide organizations with unique advantages, including reduced costs, quicker onboarding, and retained knowledge. By implementing strategic practices—such as creating clear policies, maintaining connections, assessing current needs, and fostering welcoming environments—companies can effectively tap into this valuable talent pool.

As organizations continue navigating an ever-changing workforce landscape, embracing boomerang employees may be key to building resilient teams equipped for future challenges. By recognizing the potential benefits and following best practices outlined above, businesses can create a robust strategy for rehiring that enhances both employee satisfaction and organizational performance.
Arrow Left
Arrow right
Tech Hiring Insights

HackerEarth Blogs

Gain insights to optimize your developer recruitment process.
Clear all
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Filter
Filter

Top 10 recruiting software platforms for 2024

We put together a list of top recruiting software platforms tech recruiters and HR can use, in no particular order.

Best Recruiting Platforms are

  1. HackerEarth (Coding Assessments)
  2. Dice (Open Web)
  3. Codility
  4. HireVue
  5. Pymetrics
  6. People Search (Workable)
  7. The Predictive Index
  8. Devskiller
  9. Hired
  10. Glider.ai

Read the detailed description on each of the top recruiting software platforms below:

  1. HackerEarth (Coding Assessments)

    Recruit, HackerEarth’s technical recruitment software, allows companies to use online coding tests to automate their tech screening process.

    With a library of more than 15,000 questions, technical leads and even non-tech recruiters can conduct tests on a large scale to grade developers for virtually any technical role.

    Supporting 35+, Recruit auto-assesses the submissions of each developer instantly based on defined parameters such as logical correctness, time-efficiency, memory-efficiency, and code quality.

    Tech recruiters can then analyze each applicant’s performance with the detailed reporting and analytics features within Recruit.

    With its proctoring measures and plagiarism detection techniques, recruiters can be surer about the originality of each submission.

    Looking to hire developers? Request a free demo

  2. Dice (Open Web)

    An award-winning social recruiting platform, Open Web aggregates profiles from over 180+ social sites to give you tech talent with hard-to-find skills.

    Tech recruiters can build a tech pro’s profile from digital signatures gathered from these social sites. Dice Open Web also helps them to reach out to passive candidates and get better response rates, saving time and cost.

    This recruiting platform offers predictive analytics to increase the efficiency of the hiring process.

    Talent acquisition and hiring managers can also get an overview of the candidates' technical aptitude as Open Web focuses on portals such as GitHub and Stack Overflow.

    (Also read: 5 reasons you should use Talent Assessment Software)

  3. Codility

    Codility offers an intuitive recruiting platform to increase brand visibility and help source programmers to add value to your company. Developers can be evaluated, or inspired, using customized tests/challenges and interviewed via the automated platform.

  4. HireVue

    Utah-based HireVue calls its product an “all-in-one video interview and pre-hire assessment solution.”

    The digital interview platform helps recruiters choose applicants from a sea of resumes by watching videos where they had recorded responses to interview questions.

    The company now adds artificial intelligence (voice recognition software, licensed facial recognition software, a ranking algorithm) to pick the ideal candidate.

    HireVue promises tech recruiters a modern, simple approach to hiring through insightful data.

  5. Pymetrics

    Using neuroscience games and AI, Pymetrics offers a bold recruiting platform that is bias-free.

    It helps tech recruiters build a profile of a candidate not based on resumes but on their emotional and cognitive traits.

    Pymetrics identifies what candidates are best at and matches them to the right jobs; this approach puts applicants on a more equal footing.

    “If LinkedIn and Match.com could have a child, Pymetrics would be it.” (Digital Trends)

  6. People Search (Workable)

    This search engine from Workable helps tech recruiters source candidates using “information aggregated from multiple sources in real-time,” streamline applicant tracking processes and manage interviews.

    People Search helps personalize reach and boost response rates. It allows Boolean queries as well.

  7. The Predictive Index

    This is a behavioral assessment designed to be an effective, simple, and easy evaluation of existing and future employee work skills.

    The proven methodology helps tech recruiters define the cognitive and behavior requirements for a job and assess and hire candidates accurately.

    The test uses a free-choice format and is not timed; it takes about six minutes and measures four constructs: extroversion, dominance, patience, and formality.

  8. Devskiller

    Devskiller lets companies use their own code base to test programmers online and lets developers use their own IDEs and resources.

    Tech recruiters can screen applicants with real-world sample tests to assess what really matters and interview them in real time.

    The recruiter-friendly solution automatically measures the coding skills and finds the real problem solvers. The company says it aims to imitate a “first day at work experience.”

  9. Hired

    Hired brings together tech recruiters and employees, matching the right people to the right jobs.

    The website offers “algorithmic matching, key ATS integrations, and 1:1 support” to make smart recruiting decisions for employers looking for top quality technical talent.

  10. Glider.ai

    This artificial intelligence-powered competency-based hiring platform helps recruiters build great tech teams. Glider’s approach combines the preferences and capabilities of employers (and job seekers) to ensure an efficient recruitment process without bias.

    For data-driven hiring decisions, Glider offers auto-scored coding tasks, video interviews, and real-world simulations.

(Read: How to pick the right assessment tool)

Conclusion

These are only a few of the most effective and popular recruiting platforms available in the market.

With amazing advances in artificial intelligence and machine learning, automation almost guarantees the efficiency and accuracy of the hiring process and helps create a rich workplace.

Although automation in technical recruitment is a no-brainer, organizations must remember to give enough importance to emotional intelligence and human interaction.

The recruitment landscape has changed tremendously in recent years, especially with diversity and inclusion goals and the need to become “innovative” gaining prominence.

Forward-thinking HR leaders must focus on optimizing talent along with strategic hiring and retaining engaged employees to boost overall business performance.

It pays to take all the help you can get—use talent assessment software best suited to your needs and “transform” your recruitment strategy.

Detailed feature comparison of 8 recruiting software platform for developer hiring

We decided to compare the 8 most common recruitment software platforms as per the number of users. These comparisons have been made from an external source.

All platforms have been compared based on price, number of users (admins), number of assessments and 9 other criteria.

Download full comparison by filling the form below -

Developer assessment tools

Top 10 Recruiting Software Tools for Hiring Success

We put together a list of top recruiting software platforms tech recruiters, HR can use, in no particular order.

Best Recruiting Platforms are

    1. HackerEarth (Coding Assessments)
    2. Dice (Open Web)
    3. Codility
    4. HireVue
    5. Pymetrics
    6. People Search (Workable)
    7. The Predictive Index
    8. Devskiller
    9. Hired
    10. Glider.ai
Read the detailed description on each of top recruiting software below -
  1. HackerEarth (Coding Assessments)

    Recruit, HackerEarth’s technical recruitment software, allows companies to use online coding tests to automate their tech screening process.

    With a library of more than 15,000 questions, technical leads, and even non-tech recruiters can conduct tests on a large scale to grade developers for virtually any technical role.

    Supporting 35+, Recruit auto-assesses the submissions of each developer instantly based on defined parameters such as logical correctness, time-efficiency, memory-efficiency, and code quality.

    Tech recruiters can then analyze each applicant’s performance with the detailed reporting and analytics features within Recruit.

    With its proctoring measures and plagiarism detection techniques, recruiters can be surer about the originality of each submission. -

    Looking to hire developer - Request a free demo
  2. Dice (Open Web)

    An award-winning social recruiting platform, Open Web aggregates profiles from over 180+ social sites to give you tech talent with hard-to-find skills.Tech recruiters can build a tech pro’s profile from digital signatures gathered from these social sites. Dice Open Web also helps them to reach out to passive candidates and get better response rates, saving time and cost.

    This recruiting platform offers predictive analytics to increase the efficiency of the hiring process.

    Talent acquisition and hiring managers can also get an overview of the candidates' technical aptitude as Open Web focuses on portals such as GitHub and Stack Overflow.

    (Also read: 5 reasons you should use Talent Assessment Software)
  3. Codility

    Codility offers an intuitive recruiting platform to increase brand visibility and help source programmers to add value to your company. Developers can be evaluated, or inspired, using customized tests/challenges and interviewed via the automated platform.
  4. HireVue

    Utah-based HireVue calls its product an “all-in-one video interview and pre-hire assessment solution.”The digital interview platform helped recruiters choose applicants from a sea of resumes by watching videos where they had recorded responses to interview questions.The company now adds artificial intelligence (voice recognition software, licensed facial recognition software, a ranking algorithm) to pick the ideal candidate.

    HireVue promises tech recruiters a modern, simple approach to hiring through insightful data.
  5. Pymetrics

    Using neuroscience games and AI, Pymetrics offers a bold recruiting platform that is bias-free.It helps tech recruiters build a profile of a candidate not based on resumes but on their emotional and cognitive traits.Pymetrics identifies what candidates are best at and matches them to the right jobs; this approach puts applicants on a more equal footing.“If LinkedIn and Match.com could have a child, Pymetrics would be it.” (Digital Trends)
  6. People Search (Workable)

    This search engine from Workable helps tech recruiters source candidates using “information aggregated from multiple sources in real-time,” streamline applicant tracking processes and manage interviews.People Search helps personalize reach and boost response rates. It allows Boolean queries as well.
  7. The Predictive Index

    This is a behavioral assessment designed to be an effective, simple, and easy evaluation of existing and future employee work skills.The proven methodology helps tech recruiters define the cognitive and behavior requirements for a job and assess and hire candidates accurately.The test uses a free-choice format and is not timed; it takes about six minutes and measures four constructs: extroversion, dominance, patience, and formality.
  8. Devskiller

    Devskiller lets companies use their own code base to test programmers online and lets developers use their own IDEs and resources.Tech recruiters can screen applicants with real-world sample tests to assess what really matters and interview them in real time.The recruiter-friendly solution automatically measures the coding skills and finds the real problem solvers. The company says it aims to imitate a “first day at work experience.”
  9. Hired

    Hired brings together tech recruiters and employees, matching the right people to the right jobs.The website offers “algorithmic matching, key ATS integrations, and 1:1 support” to make smart recruiting decisions for employers looking for top quality technical talent.
  10. Glider.ai

    This artificial intelligence-powered competency-based hiring platform helps recruiters build great tech teams. Glider’s approach combines the preferences and capabilities of employers (and job seekers) to ensure an efficient recruitment process without bias. For data-driven hiring decisions, Glider offers auto-scored coding tasks, video interviews, and real-world simulations.
(Read: How to pick the right assessment tool)

Conclusion

These are only a few of the most effective and popular recruiting platform available in the market.With amazing advances in artificial intelligence and machine learning, automation almost guarantees the efficiency and accuracy of the hiring process and helps create a rich workplace.Although automation in technical recruitment is a no-brainer, organizations must remember to give enough importance to emotional intelligence and human interaction.The recruitment landscape has changed tremendously in recent years, especially with diversity and inclusion goals and the need to become “innovative” gaining prominence.Forward-thinking HR leaders must focus on optimizing talent along with strategic hiring and retaining engaged employees to boost overall business performance.It pays to take all the help you can get—use talent assessment software best suited to your needs and “transform” your recruitment strategy.

Detailed feature comparison of 8 recruiting software platform for developer hiring

We decided to compare the 8 most common recruitment software platforms as per the number of users. These comparisons have been made from an external source.

All platforms have been compared based on price, number of users (admins), number of assessments and 9 other criteria.

Download full comparison by filling the form below -hbspt.forms.create({portalId: "2586902",formId: "28743abe-765e-4f2a-b7d6-470b90136efc"});

Developer assessment tools

Technology Recruiting: The Future of Hiring Top Developers

Key Takeaways for Tech Recruiters

  • Benchmark existing employees to identify skill gaps before hiring externally.
  • Adopt data-driven strategies to expedite and enhance the quality of the hiring process.
  • Use AI-powered tools to assess and identify top talent.
  • Engage with talent via hackathons and coding challenges.
  • Aim to provide a positive candidate experience with your recruitment methods. 

Introduction

India’s technology sector has seen impeccable growth in recent years, creating exciting job opportunities for engineering professionals. However, the employment numbers reflect a different picture. Every year, roughly 1.5 million students graduate from engineering colleges. However, only 10% can find employment as they lack the practical skills to qualify for coveted jobs. Therefore, identifying, assessing and hiring top talent is challenging for even the most skilled and experienced recruiters. To tackle this issue, hiring teams must adapt data-driven strategies, leverage AI-powered tools and focus on skills-based hiring. 

In this article we explore modern technology recruiting techniques that can help recruiters make faster, fairer, and more efficient hiring decisions.

The Challenges in Tech Hiring Today

Decline In Skilled Talent

Although there is no shortage of highly qualified developers in today’s job market, there is an acute shortage of ones that are well-rounded. One of the major issues recruiters face today is finding the skilled and talented developers with industry-specific skills.

A LinkedIn report found that 67% of recruiters struggle to source qualified candidates for technical positions. 

Passive Hiring Is Passe

Traditional hiring methods are ineffective and are being replaced with AI and automation. Even advanced Applicant Tracking Systems (ATS) fail to capture real skills, leading to a gap between the job requirements and a candidate’s true capabilities leading to very few favourable results.

Pro tip! Use live assessment tests to assess candidate skills in real time.

Bias in Hiring Still Exists

Several companies still rely on conventional hiring methods, leading to unconscious bias, causing them to miss out on acquiring great talent. Over 60% of hiring managers admit that hiring decisions are biased at some point in the recruitment process.

Candidate Experience Matters More Than Ever

A positive candidate experience is crucial in retaining good talent. Shorter hiring periods, and prompt response after interviews are some of the ways to keep new talent engaged in the recruitment process.  Lengthy assessment periods, slow feedback loops and outdated interview formats turn candidates away even from the most admired brands/companies.

Pro tip! Aim to complete the entire hiring process for top talent within 2 weeks 

Overcoming Hiring Challenges with Modern Recruiting Techniques

Attracting Top Talent 

The first step towards employing the best tech talent is to craft meaningful job descriptions. In tech recruitment, top talent is attracted to a purpose-driven job description over everything else. Engineers are realists. So it is essential to showcase your organisation’s tech values to attract skilled talent.

Leverage AI-Powered Screening

AI-powered recruitment tools can help recruiters find top talent without bias, automate mundane tasks, reduce hiring time and ensure diversity.

How to Implement AI-Powered Assessments:

  • AI-driven assessments rank candidates based on skills and problem-solving efficiency.
  • Automated coding interview platforms like HackerEarth FaceCodeprovide real-time code playback and instant feedback.
  • Reduce unconscious bias by using AI-powered resume masking to focus on skills rather than demographics.

Pro Tip: Remember that no matter how efficient AI is, at the end of the day it is a program that can produce potentially biased results. Hence, ensure that your hiring strategies include human intervention at crucial stages.

Use Hackathons to Identify Top Talent

Hackathons are an excellent way to engage with top developers while assessing their technical and collaboration skills.

How to Use Hackathon as a Hiring Tool?

  • Host a hiring hackathon to attract top talent and test problem-solving capabilities.
  • Use hackathons as a pre-hiring assessment to see how candidates perform under real-world pressure.
  • Engage with HackerEarth’s rich global developer community of 9.6M+ developers..

Adopt Skills-Based Hiring

Resumes fail to capture the true skills of potential candidates. Instead, use online assessment tools to understand and assess potential candidates in real time.

How to Implement Skills-Based Assessments:

  • Use HackerEarth Assessments to evaluate coding and problem-solving abilities.
  • Design real-world coding projects that mimic actual work scenarios.
  • Incorporate full-stack developer assessments to gauge a candidate’s overall expertise.

Enhance Candidate Experience with Seamless Processes

Leverage developer-friendly forums like GitHub and LinkedIn to attract skilful candidates. Make yourself approachable to potential candidates by leveraging chatbots to answer common questions they might have about your company. Such practices enhance employee engagement, garner good brand recognition and facilitate seamless hiring.

How to Enhance Candidate Experience?

  • Cut down assessment time with AI-powered adaptive testing that adjusts difficulty based on responses.
  • Offer live coding interviews instead of multiple rounds of generic technical screenings.
  • Provide instant feedback to candidates post-assessment to improve engagement.

Benchmark Internal Talent for Strategic Hiring

Implement internal feedback loops that help bridge skill gaps, and then advertise for candidates accordingly.

How to Implement:

  • Use internal benchmarking to measure current employee skills against industry standards.
  • Create personalized learning paths for upskilling developers before sourcing externally.
  • Encourage internal upward mobility by promoting skilled employees into open roles instead of hiring externally. It’s not only cheaper but it also increases retention and improves employee morale.

Case Study: How MoEngage Enhanced Hiring Quality with HackerEarth

Challenge: MoEngage, a customer engagement platform, wanted to add top notch talent to its engineering team quickly but found conventional screening methods misaligned and difficult to manage. 

Solution: By partnering with HackerEarth, MoEngage introduced technical assessments to pre-screen candidates before technical interviews. This streamlined the hiring process and ensured that only qualified candidates progressed to the interview stages.

Key Achievements:

  • 50% improvement in candidate quality: The introduction of assessments led to a higher calibre of candidates reaching the interview stage.
  • 400% expansion in the talent pool: Automated assessments allowed MoEngage to consider a broader range of applicants without increasing the recruitment team's workload.
  • Reduction in interviews per hire: Previously, hiring managers interviewed up to 15 candidates per role; with HackerEarth's assessments, this number decreased to 6, optimising interviewer time and resources.

Results: MoEngage successfully scaled its engineering teams, improved the efficiency of its hiring process, and ensured a higher calibre of new hires, contributing to the company's growth and innovation.

Read the full case study here: hackerearth.com

The Future of Technology Recruiting

The recruitment landscape is evolving rapidly. With AI, data-driven decision-making, and skills-first hiring, companies can identify and retain the best developers faster and more efficiently.

Conclusion

The tech industry is making transformative strides with the help of AI and automation. To keep up with changing times, recruiters must accept and adapt data-driven methods to identify, assess and hire skilled professionals. HackerEarth’s assessment solutions are agile and capable of helping modern-day recruiters carry out their mission of aligning top tier talent with organization’s needs. Skills-based assessments, AI-driven hiring practices, and hackathons are here to stay, and recruiters must leverage these tools to find the best tech talent in the industry.

Data Visualization for Beginners-Part 3

Bonjour! Welcome to another part of the series on data visualization techniques. In the previous two articles, we discussed different data visualization techniques that can be applied to visualize and gather insights from categorical and continuous variables. You can check out the first two articles here:

In this article, we’ll go through the implementation and use of a bunch of data visualization techniques such as heat maps, surface plots, correlation plots, etc. We will also look at different techniques that can be used to visualize unstructured data such as images, text, etc.

 ### Importing the required libraries   
 import pandas as pd   
 import numpy as np  
 import seaborn as sns   
 import matplotlib.pyplot as plt   
 import plotly.plotly as py  
 import plotly.graph_objs as go  
 %matplotlib inline  

Heatmaps

A heat map(or heatmap) is a two-dimensional graphical representation of the data which uses colour to represent data points on the graph. It is useful in understanding underlying relationships between data values that would be much harder to understand if presented numerically in a table/ matrix.

### We can create a heatmap by simply using the seaborn library.   
 sample_data = np.random.rand(8, 12)  
 ax = sns.heatmap(sample_data)  
Heatmaps, seaborn, python, matplot, data visualization
Fig 1. Heatmap using the seaborn library

Let’s understand this using an example. We’ll be using the metadata from Deep Learning 3 challenge. Link to the dataset. Deep Learning 3 challenged the participants to predict the attributes of animals by looking at their images.

 ### Training metadata contains the name of the image and the corresponding attributes associated with the animal in the image.  
 train = pd.read_csv('meta-data/train.csv')  
 train.head()  

We will be analyzing how often an attribute occurs in relationship with the other attributes. To analyze this relationship, we will compute the co-occurrence matrix.

 ### Extracting the attributes  
 cols = list(train.columns)  
 cols.remove('Image_name')  
 attributes = np.array(train[cols])  
 print('There are {} attributes associated with {} images.'.format(attributes.shape[1],attributes.shape[0]))  
 Out: There are 85 attributes associated with 12,600 images.  
 # Compute the co-occurrence matrix  
 cooccurrence_matrix = np.dot(attributes.transpose(), attributes)  
 print('\n Co-occurrence matrix: \n', cooccurrence_matrix)  
 Out: Co-occurrence matrix:   
  [[5091 728 797 ... 3797 728 2024]  
  [ 728 1614  0 ... 669 1614 1003]  
  [ 797  0 1188 ... 1188  0 359]  
  ...  
  [3797 669 1188 ... 8305 743 3629]  
  [ 728 1614  0 ... 743 1933 1322]  
  [2024 1003 359 ... 3629 1322 6227]]  
 # Normalizing the co-occurrence matrix, by converting the values into a matrix  
 # Compute the co-occurrence matrix in percentage  
 #Reference:https://stackoverflow.com/questions/20574257/constructing-a-co-occurrence-matrix-in-python-pandas/20574460  
 cooccurrence_matrix_diagonal = np.diagonal(cooccurrence_matrix)  
 with np.errstate(divide = 'ignore', invalid='ignore'):  
   cooccurrence_matrix_percentage = np.nan_to_num(np.true_divide(cooccurrence_matrix, cooccurrence_matrix_diagonal))  
 print('\n Co-occurrence matrix percentage: \n', cooccurrence_matrix_percentage)  

We can see that the values in the co-occurrence matrix represent the occurrence of each attribute with the other attributes. Although the matrix contains all the information, it is visually hard to interpret and infer from the matrix. To counter this problem, we will use heat maps, which can help relate the co-occurrences graphically.

 fig = plt.figure(figsize=(10, 10))  
 sns.set(style='white')  
 # Draw the heatmap with the mask and correct aspect ratio   
 ax = sns.heatmap(cooccurrence_matrix_percentage, cmap='viridis', center=0, square=True, linewidths=0.15, cbar_kws={"shrink": 0.5, "label": "Co-occurrence frequency"}, )  
 ax.set_title('Heatmap of the attributes')  
 ax.set_xlabel('Attributes')  
 ax.set_ylabel('Attributes')  
 plt.show()  
Heatmap, data visualization, python, co occurence, seaborn
Fig 2. Heatmap of the co-occurrence matrix indicating the frequency of occurrence of one attribute with other

Since the frequency of the co-occurrence is represented by a colour pallet, we can now easily interpret which attributes appear together the most. Thus, we can infer that these attributes are common to most of the animals.

Machine learning challenge, ML challenge

Choropleth

Choropleths are a type of map that provides an easy way to show how some quantity varies across a geographical area or show the level of variability within a region. A heat map is similar but doesn’t include geographical boundaries. Choropleth maps are also appropriate for indicating differences in the distribution of the data over an area, like ownership or use of land or type of forest cover, density information, etc. We will be using the geopandas library to implement the choropleth graph.

We will be using choropleth graph to visualize the GDP across the globe. Link to the dataset.

 # Importing the required libraries  
 import geopandas as gpd   
 from shapely.geometry import Point  
 from matplotlib import cm  
 # GDP mapped to the corresponding country and their acronyms  
 df =pd.read_csv('GDP.csv')  
 df.head()  
COUNTRY GDP (BILLIONS) CODE
0 Afghanistan 21.71 AFG
1 Albania 13.40 ALB
2 Algeria 227.80 DZA
3 American Samoa 0.75 ASM
4 Andorra 4.80 AND
### Importing the geometry locations of each country on the world map  
 geo = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))[['iso_a3', 'geometry']]  
 geo.columns = ['CODE', 'Geometry']  
 geo.head()  
# Mapping the country codes to the geometry locations  
 df = pd.merge(df, geo, left_on='CODE', right_on='CODE', how='inner')  
 #converting the dataframe to geo-dataframe  
 geometry = df['Geometry']  
 df.drop(['Geometry'], axis=1, inplace=True)  
 crs = {'init':'epsg:4326'}  
 geo_gdp = gpd.GeoDataFrame(df, crs=crs, geometry=geometry)  
 ## Plotting the choropleth  
 cpleth = geo_gdp.plot(column='GDP (BILLIONS)', cmap=cm.Spectral_r, legend=True, figsize=(8,8))  
 cpleth.set_title('Choropleth Graph - GDP of different countries')  
choropleth maps, choropleth graphs, data visualization techniques, python, big data, machine learning
Fig 3. Choropleth graph indicating the GDP according to geographical locations

Surface plot

Surface plots are used for the three-dimensional representation of the data. Rather than showing individual data points, surface plots show a functional relationship between a dependent variable (Z) and two independent variables (X and Y).

It is useful in analyzing relationships between the dependent and the independent variables and thus helps in establishing desirable responses and operating conditions.

 from mpl_toolkits.mplot3d import Axes3D  
 from matplotlib.ticker import LinearLocator, FormatStrFormatter  
 # Creating a figure  
 # projection = '3d' enables the third dimension during plot  
 fig = plt.figure(figsize=(10,8))  
 ax = fig.gca(projection='3d')  
 # Initialize data   
 X = np.arange(-5,5,0.25)  
 Y = np.arange(-5,5,0.25)  
 # Creating a meshgrid  
 X, Y = np.meshgrid(X, Y)  
 R = np.sqrt(np.abs(X**2 - Y**2))  
 Z = np.exp(R)  
 # plot the surface   
 surf = ax.plot_surface(X, Y, Z, cmap=cm.GnBu, antialiased=False)  
 # Customize the z axis.  
 ax.zaxis.set_major_locator(LinearLocator(10))  
 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))  
 ax.set_title('Surface Plot')  
 # Add a color bar which maps values to colors.  
 fig.colorbar(surf, shrink=0.5, aspect=5)  
 plt.show()  

One of the main applications of surface plots in machine learning or data science is the analysis of the loss function. From a surface plot, we can analyze how the hyperparameters affect the loss function and thus help prevent overfitting of the model.

python, 3d plot, machine learning, data visualization, machine learning, loss function, gradient descent, big data
Fig 4. Surface plot visualizing the dependent variable w.r.t the independent variables in 3-dimensions

Visualizing high-dimensional datasets

Dimensionality refers to the number of attributes present in the dataset. For example, consumer-retail datasets can have a vast amount of variables (e.g. sales, promos, products, open, etc.). As a result, visually exploring the dataset to find potential correlations between variables becomes extremely challenging.

Therefore, we use a technique called dimensionality reduction to visualize higher dimensional datasets. Here, we will focus on two such techniques :

  • Principal Component Analysis (PCA)
  • T-distributed Stochastic Neighbor Embedding (t-SNE)

Principal Component Analysis (PCA)

Before we jump into understanding PCA, let’s review some terms:

  • Variance: Variance is simply the measure of the spread or extent of the data. Mathematically, it is the average squared deviation from the mean position.varaince, PCA, prinicipal component analysis
  • Covariance: Covariance is the measure of the extent to which corresponding elements from two sets of ordered data move in the same direction. It is the measure of how two random variables vary together. It is similar to variance, but where variance tells you the extent of one variable, covariance tells you the extent to which the two variables vary together. Mathematically, it is defined as:

A positive covariance means X and Y are positively related, i.e., if X increases, Y increases, while negative covariance means the opposite relation. However, zero variance means X and Y are not related.

PCA, Principal Component Analysis , dimension reduction, python, machine learning, big data, image classification
Fig 5. Different types of covariance

PCA is the orthogonal projection of data onto a lower-dimension linear space that maximizes variance (green line) of the projected data and minimizes the mean squared distance between the data point and the projects (blue line). The variance describes the direction of maximum information while the mean squared distance describes the information lost during projection of the data onto the lower dimension.

Thus, given a set of data points in a d-dimensional space, PCA projects these points onto a lower dimensional space while preserving as much information as possible.

 principal component analysis, machine learning, dimension reduction technqieus, data visualization techniques, deep learning, ICA, PCA
Fig 6. Illustration of principal component analysis

In the figure, the component along the direction of maximum variance is defined as the first principal axis. Similarly, the component along the direction of second maximum variance is defined as the second principal component, and so on. These principal components are referred to the new dimensions carrying the maximum information.

 # We will use the breast cancer dataset as an example  
 # The dataset is a binary classification dataset  
 # Importing the dataset  
 from sklearn.datasets import load_breast_cancer  
 data = load_breast_cancer()  
 X = pd.DataFrame(data=data.data, columns=data.feature_names) # Features   
 y = data.target # Target variable   
 # Importing PCA function  
 from sklearn.decomposition import PCA  
 pca = PCA(n_components=2) # n_components = number of principal components to generate  
 # Generating pca components from the data  
 pca_result = pca.fit_transform(X)  
 print("Explained variance ratio : \n",pca.explained_variance_ratio_)  
 Out: Explained variance ratio :   
  [0.98204467 0.01617649]  

We can see that 98% (approx) variance of the data is along the first principal component, while the second component only expresses 1.6% (approx) of the data.

 # Creating a figure   
 fig = plt.figure(1, figsize=(10, 10))  
 # Enabling 3-dimensional projection   
 ax = fig.gca(projection='3d')  
 for i, name in enumerate(data.target_names):  
   ax.text3D(np.std(pca_result[:, 0][y==i])-i*500 ,np.std(pca_result[:, 1][y==i]),0,s=name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))  
 # Plotting the PCA components    
 ax.scatter(pca_result[:,0], pca_result[:, 1], c=y, cmap = plt.cm.Spectral,s=20, label=data.target_names)  
 plt.show()  
PCA, principal component analysis, pca, ica, higher dimension data, dimension reduction techniques, data visualization of higher dimensions
Fig 7. Visualizing the distribution of cancer across the data

Thus, with the help of PCA, we can get a visual perception of how the labels are distributed across given data (see Figure).

T-distributed Stochastic Neighbour Embedding (t-SNE)

T-distributed Stochastic Neighbour Embeddings (t-SNE) is a non-linear dimensionality reduction technique that is well suited for visualization of high-dimensional data. It was developed by Laurens van der Maten and Geoffrey Hinton. In contrast to PCA, which is a mathematical technique, t-SNE adopts a probabilistic approach.

PCA can be used for capturing the global structure of the high-dimensional data but fails to describe the local structure within the data. Whereas, “t-SNE” is capable of capturing the local structure of the high-dimensional data very well while also revealing global structure such as the presence of clusters at several scales. t-SNE converts the similarity between data points to joint probabilities and tries to maximize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embeddings and high-dimension data. In doing so, it preserves the original structure of the data.

 # We will be using the scikit learn library to implement t-SNE  
 # Importing the t-SNE library   
 from sklearn.manifold import TSNE  
 # We will be using the iris dataset for this example  
 from sklearn.datasets import load_iris  
 # Loading the iris dataset   
 data = load_iris()  
 # Extracting the features   
 X = data.data  
 # Extracting the labels   
 y = data.target  
 # There are four features in the iris dataset with three different labels.  
 print('Features in iris data:\n', data.feature_names)  
 print('Labels in iris data:\n', data.target_names)  
 Out: Features in iris data:  
  ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']  
 Labels in iris data:  
  ['setosa' 'versicolor' 'virginica']  
 # Loading the TSNE model   
 # n_components = number of resultant components   
 # n_iter = Maximum number of iterations for the optimization.  
 tsne_model = TSNE(n_components=3, n_iter=2500, random_state=47)  
 # Generating new components   
 new_values = tsne_model.fit_transform(X)  
 labels = data.target_names  
 # Plotting the new dimensions/ components  
 fig = plt.figure(figsize=(5, 5))  
 ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)  
 for label, name in enumerate(labels):  
   ax.text3D(new_values[y==label, 0].mean(),  
        new_values[y==label, 1].mean() + 1.5,  
        new_values[y==label, 2].mean(), name,  
        horizontalalignment='center',  
        bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))  
 ax.scatter(new_values[:,0], new_values[:,1], new_values[:,2], c=y)  
 ax.set_title('High-Dimension data visualization using t-SNE', loc='right')  
 plt.show()  
Iris data set, Tsne, data visualization of words, data visualization techniques, dimension reduction techniques, higher dimension data
Fig 8. Visualizing the feature space of the iris dataset using t-SNE

Thus, by reducing the dimensions using t-SNE, we can visualize the distribution of the labels over the feature space. We can see that in the figure the labels are clustered in their own little group. So, if we’re to use a clustering algorithm to generate clusters using the new features/components, we can accurately assign new points to a label.

Conclusion

Let’s quickly summarize the topics we covered. We started with the generation of heatmaps using random numbers and extended its application to a real-world example. Next, we implemented choropleth graphs to visualize the data points with respect to geographical locations. We moved on to implement surface plots to get an idea of how we can visualize the data in a three-dimensional surface. Finally, we used two- dimensional reduction techniques, PCA and t-SNE, to visualize high-dimensional datasets.

I encourage you to implement the examples described in this article to get a hands-on experience. Hope you enjoyed the article. Do let me know if you have any feedback, suggestions, or thoughts on this article in the comments below!

Data Visualization for Beginners

Bonjour! Welcome to another part of the series on data visualization techniques. In the previous two articles, we discussed different data visualization techniques that can be applied to visualize and gather insights from categorical and continuous variables. You can check out the first two articles here:

In this article, we’ll go through the implementation and use of a bunch of data visualization techniques such as heat maps, surface plots, correlation plots, etc. We will also look at different techniques that can be used to visualize unstructured data such as images, text, etc.

 ### Importing the required libraries   
 import pandas as pd   
 import numpy as np  
 import seaborn as sns   
 import matplotlib.pyplot as plt   
 import plotly.plotly as py  
 import plotly.graph_objs as go  
 %matplotlib inline  

Heatmaps

A heat map(or heatmap) is a two-dimensional graphical representation of the data which uses colour to represent data points on the graph. It is useful in understanding underlying relationships between data values that would be much harder to understand if presented numerically in a table/ matrix.

### We can create a heatmap by simply using the seaborn library.   
 sample_data = np.random.rand(8, 12)  
 ax = sns.heatmap(sample_data)  
Heatmaps, seaborn, python, matplot, data visualization
Fig 1. Heatmap using the seaborn library

Let’s understand this using an example. We’ll be using the metadata from Deep Learning 3 challenge. Link to the dataset. Deep Learning 3 challenged the participants to predict the attributes of animals by looking at their images.

 ### Training metadata contains the name of the image and the corresponding attributes associated with the animal in the image.  
 train = pd.read_csv('meta-data/train.csv')  
 train.head()  

We will be analyzing how often an attribute occurs in relationship with the other attributes. To analyze this relationship, we will compute the co-occurrence matrix.

 ### Extracting the attributes  
 cols = list(train.columns)  
 cols.remove('Image_name')  
 attributes = np.array(train[cols])  
 print('There are {} attributes associated with {} images.'.format(attributes.shape[1],attributes.shape[0]))  
 Out: There are 85 attributes associated with 12,600 images.  
 # Compute the co-occurrence matrix  
 cooccurrence_matrix = np.dot(attributes.transpose(), attributes)  
 print('\n Co-occurrence matrix: \n', cooccurrence_matrix)  
 Out: Co-occurrence matrix:   
  [[5091 728 797 ... 3797 728 2024]  
  [ 728 1614  0 ... 669 1614 1003]  
  [ 797  0 1188 ... 1188  0 359]  
  ...  
  [3797 669 1188 ... 8305 743 3629]  
  [ 728 1614  0 ... 743 1933 1322]  
  [2024 1003 359 ... 3629 1322 6227]]  
 # Normalizing the co-occurrence matrix, by converting the values into a matrix  
 # Compute the co-occurrence matrix in percentage  
 #Reference:https://stackoverflow.com/questions/20574257/constructing-a-co-occurrence-matrix-in-python-pandas/20574460  
 cooccurrence_matrix_diagonal = np.diagonal(cooccurrence_matrix)  
 with np.errstate(divide = 'ignore', invalid='ignore'):  
   cooccurrence_matrix_percentage = np.nan_to_num(np.true_divide(cooccurrence_matrix, cooccurrence_matrix_diagonal))  
 print('\n Co-occurrence matrix percentage: \n', cooccurrence_matrix_percentage)  

We can see that the values in the co-occurrence matrix represent the occurrence of each attribute with the other attributes. Although the matrix contains all the information, it is visually hard to interpret and infer from the matrix. To counter this problem, we will use heat maps, which can help relate the co-occurrences graphically.

 fig = plt.figure(figsize=(10, 10))  
 sns.set(style='white')  
 # Draw the heatmap with the mask and correct aspect ratio   
 ax = sns.heatmap(cooccurrence_matrix_percentage, cmap='viridis', center=0, square=True, linewidths=0.15, cbar_kws={"shrink": 0.5, "label": "Co-occurrence frequency"}, )  
 ax.set_title('Heatmap of the attributes')  
 ax.set_xlabel('Attributes')  
 ax.set_ylabel('Attributes')  
 plt.show()  
Heatmap, data visualization, python, co occurence, seaborn
Fig 2. Heatmap of the co-occurrence matrix indicating the frequency of occurrence of one attribute with other

Since the frequency of the co-occurrence is represented by a colour pallet, we can now easily interpret which attributes appear together the most. Thus, we can infer that these attributes are common to most of the animals.

Machine learning challenge, ML challenge

Choropleth

Choropleths are a type of map that provides an easy way to show how some quantity varies across a geographical area or show the level of variability within a region. A heat map is similar but doesn’t include geographical boundaries. Choropleth maps are also appropriate for indicating differences in the distribution of the data over an area, like ownership or use of land or type of forest cover, density information, etc. We will be using the geopandas library to implement the choropleth graph.

We will be using choropleth graph to visualize the GDP across the globe. Link to the dataset.

 # Importing the required libraries  
 import geopandas as gpd   
 from shapely.geometry import Point  
 from matplotlib import cm  
 # GDP mapped to the corresponding country and their acronyms  
 df =pd.read_csv('GDP.csv')  
 df.head()  
COUNTRY GDP (BILLIONS) CODE
0 Afghanistan 21.71 AFG
1 Albania 13.40 ALB
2 Algeria 227.80 DZA
3 American Samoa 0.75 ASM
4 Andorra 4.80 AND
### Importing the geometry locations of each country on the world map  
 geo = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))[['iso_a3', 'geometry']]  
 geo.columns = ['CODE', 'Geometry']  
 geo.head()  
# Mapping the country codes to the geometry locations  
 df = pd.merge(df, geo, left_on='CODE', right_on='CODE', how='inner')  
 #converting the dataframe to geo-dataframe  
 geometry = df['Geometry']  
 df.drop(['Geometry'], axis=1, inplace=True)  
 crs = {'init':'epsg:4326'}  
 geo_gdp = gpd.GeoDataFrame(df, crs=crs, geometry=geometry)  
 ## Plotting the choropleth  
 cpleth = geo_gdp.plot(column='GDP (BILLIONS)', cmap=cm.Spectral_r, legend=True, figsize=(8,8))  
 cpleth.set_title('Choropleth Graph - GDP of different countries')  
choropleth maps, choropleth graphs, data visualization techniques, python, big data, machine learning
Fig 3. Choropleth graph indicating the GDP according to geographical locations

Surface plot

Surface plots are used for the three-dimensional representation of the data. Rather than showing individual data points, surface plots show a functional relationship between a dependent variable (Z) and two independent variables (X and Y).

It is useful in analyzing relationships between the dependent and the independent variables and thus helps in establishing desirable responses and operating conditions.

 from mpl_toolkits.mplot3d import Axes3D  
 from matplotlib.ticker import LinearLocator, FormatStrFormatter  
 # Creating a figure  
 # projection = '3d' enables the third dimension during plot  
 fig = plt.figure(figsize=(10,8))  
 ax = fig.gca(projection='3d')  
 # Initialize data   
 X = np.arange(-5,5,0.25)  
 Y = np.arange(-5,5,0.25)  
 # Creating a meshgrid  
 X, Y = np.meshgrid(X, Y)  
 R = np.sqrt(np.abs(X**2 - Y**2))  
 Z = np.exp(R)  
 # plot the surface   
 surf = ax.plot_surface(X, Y, Z, cmap=cm.GnBu, antialiased=False)  
 # Customize the z axis.  
 ax.zaxis.set_major_locator(LinearLocator(10))  
 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))  
 ax.set_title('Surface Plot')  
 # Add a color bar which maps values to colors.  
 fig.colorbar(surf, shrink=0.5, aspect=5)  
 plt.show()  

One of the main applications of surface plots in machine learning or data science is the analysis of the loss function. From a surface plot, we can analyze how the hyperparameters affect the loss function and thus help prevent overfitting of the model.

python, 3d plot, machine learning, data visualization, machine learning, loss function, gradient descent, big data
Fig 4. Surface plot visualizing the dependent variable w.r.t the independent variables in 3-dimensions

Visualizing high-dimensional datasets

Dimensionality refers to the number of attributes present in the dataset. For example, consumer-retail datasets can have a vast amount of variables (e.g. sales, promos, products, open, etc.). As a result, visually exploring the dataset to find potential correlations between variables becomes extremely challenging.

Therefore, we use a technique called dimensionality reduction to visualize higher dimensional datasets. Here, we will focus on two such techniques :

  • Principal Component Analysis (PCA)
  • T-distributed Stochastic Neighbor Embedding (t-SNE)

Principal Component Analysis (PCA)

Before we jump into understanding PCA, let’s review some terms:

  • Variance: Variance is simply the measure of the spread or extent of the data. Mathematically, it is the average squared deviation from the mean position.varaince, PCA, prinicipal component analysis
  • Covariance: Covariance is the measure of the extent to which corresponding elements from two sets of ordered data move in the same direction. It is the measure of how two random variables vary together. It is similar to variance, but where variance tells you the extent of one variable, covariance tells you the extent to which the two variables vary together. Mathematically, it is defined as:

A positive covariance means X and Y are positively related, i.e., if X increases, Y increases, while negative covariance means the opposite relation. However, zero variance means X and Y are not related.

PCA, Principal Component Analysis , dimension reduction, python, machine learning, big data, image classification
Fig 5. Different types of covariance

PCA is the orthogonal projection of data onto a lower-dimension linear space that maximizes variance (green line) of the projected data and minimizes the mean squared distance between the data point and the projects (blue line). The variance describes the direction of maximum information while the mean squared distance describes the information lost during projection of the data onto the lower dimension.

Thus, given a set of data points in a d-dimensional space, PCA projects these points onto a lower dimensional space while preserving as much information as possible.

 principal component analysis, machine learning, dimension reduction technqieus, data visualization techniques, deep learning, ICA, PCA
Fig 6. Illustration of principal component analysis

In the figure, the component along the direction of maximum variance is defined as the first principal axis. Similarly, the component along the direction of second maximum variance is defined as the second principal component, and so on. These principal components are referred to the new dimensions carrying the maximum information.

 # We will use the breast cancer dataset as an example  
 # The dataset is a binary classification dataset  
 # Importing the dataset  
 from sklearn.datasets import load_breast_cancer  
 data = load_breast_cancer()  
 X = pd.DataFrame(data=data.data, columns=data.feature_names) # Features   
 y = data.target # Target variable   
 # Importing PCA function  
 from sklearn.decomposition import PCA  
 pca = PCA(n_components=2) # n_components = number of principal components to generate  
 # Generating pca components from the data  
 pca_result = pca.fit_transform(X)  
 print("Explained variance ratio : \n",pca.explained_variance_ratio_)  
 Out: Explained variance ratio :   
  [0.98204467 0.01617649]  

We can see that 98% (approx) variance of the data is along the first principal component, while the second component only expresses 1.6% (approx) of the data.

 # Creating a figure   
 fig = plt.figure(1, figsize=(10, 10))  
 # Enabling 3-dimensional projection   
 ax = fig.gca(projection='3d')  
 for i, name in enumerate(data.target_names):  
   ax.text3D(np.std(pca_result[:, 0][y==i])-i*500 ,np.std(pca_result[:, 1][y==i]),0,s=name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))  
 # Plotting the PCA components    
 ax.scatter(pca_result[:,0], pca_result[:, 1], c=y, cmap = plt.cm.Spectral,s=20, label=data.target_names)  
 plt.show()  
PCA, principal component analysis, pca, ica, higher dimension data, dimension reduction techniques, data visualization of higher dimensions
Fig 7. Visualizing the distribution of cancer across the data

Thus, with the help of PCA, we can get a visual perception of how the labels are distributed across given data (see Figure).

T-distributed Stochastic Neighbour Embedding (t-SNE)

T-distributed Stochastic Neighbour Embeddings (t-SNE) is a non-linear dimensionality reduction technique that is well suited for visualization of high-dimensional data. It was developed by Laurens van der Maten and Geoffrey Hinton. In contrast to PCA, which is a mathematical technique, t-SNE adopts a probabilistic approach.

PCA can be used for capturing the global structure of the high-dimensional data but fails to describe the local structure within the data. Whereas, “t-SNE” is capable of capturing the local structure of the high-dimensional data very well while also revealing global structure such as the presence of clusters at several scales. t-SNE converts the similarity between data points to joint probabilities and tries to maximize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embeddings and high-dimension data. In doing so, it preserves the original structure of the data.

 # We will be using the scikit learn library to implement t-SNE  
 # Importing the t-SNE library   
 from sklearn.manifold import TSNE  
 # We will be using the iris dataset for this example  
 from sklearn.datasets import load_iris  
 # Loading the iris dataset   
 data = load_iris()  
 # Extracting the features   
 X = data.data  
 # Extracting the labels   
 y = data.target  
 # There are four features in the iris dataset with three different labels.  
 print('Features in iris data:\n', data.feature_names)  
 print('Labels in iris data:\n', data.target_names)  
 Out: Features in iris data:  
  ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']  
 Labels in iris data:  
  ['setosa' 'versicolor' 'virginica']  
 # Loading the TSNE model   
 # n_components = number of resultant components   
 # n_iter = Maximum number of iterations for the optimization.  
 tsne_model = TSNE(n_components=3, n_iter=2500, random_state=47)  
 # Generating new components   
 new_values = tsne_model.fit_transform(X)  
 labels = data.target_names  
 # Plotting the new dimensions/ components  
 fig = plt.figure(figsize=(5, 5))  
 ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)  
 for label, name in enumerate(labels):  
   ax.text3D(new_values[y==label, 0].mean(),  
        new_values[y==label, 1].mean() + 1.5,  
        new_values[y==label, 2].mean(), name,  
        horizontalalignment='center',  
        bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))  
 ax.scatter(new_values[:,0], new_values[:,1], new_values[:,2], c=y)  
 ax.set_title('High-Dimension data visualization using t-SNE', loc='right')  
 plt.show()  
Iris data set, Tsne, data visualization of words, data visualization techniques, dimension reduction techniques, higher dimension data
Fig 8. Visualizing the feature space of the iris dataset using t-SNE

Thus, by reducing the dimensions using t-SNE, we can visualize the distribution of the labels over the feature space. We can see that in the figure the labels are clustered in their own little group. So, if we’re to use a clustering algorithm to generate clusters using the new features/components, we can accurately assign new points to a label.

Conclusion

Let’s quickly summarize the topics we covered. We started with the generation of heatmaps using random numbers and extended its application to a real-world example. Next, we implemented choropleth graphs to visualize the data points with respect to geographical locations. We moved on to implement surface plots to get an idea of how we can visualize the data in a three-dimensional surface. Finally, we used two- dimensional reduction techniques, PCA and t-SNE, to visualize high-dimensional datasets.

I encourage you to implement the examples described in this article to get a hands-on experience. Hope you enjoyed the article. Do let me know if you have any feedback, suggestions, or thoughts on this article in the comments below!

Are hackathons good, bad, or overrated?

From Pope Francis to the President’s office, hackathons seem to be the flavor of the day. Over 80% of Fortune 100 and 60% of Fortune 500 companies have hosted or sponsored a hackathon. With rising popularity come criticisms and misconceptions. Having closely witnessed 300+ hackathons and multiple formats (public, corporate-sponsored, University, Internal and Non-profit hackathons) over a period of two years, one thing is absolutely clear.

Hackathon is a very powerful tool for innovation, IF DONE RIGHT.

However, there are some misbeliefs and unrealistic expectations.

Corporates exploit developers

The most common criticism is that the corporates outsource their work—the participant being unpaid labor and hackathons being exploitative in nature.

Hackathons are purely driven by passionate developers/ participants. The spirit in which people participate in hackathons is no different from voluntary contributions to open source. It originates from the desire to learn, experiment, solve complex problems, contribute, and build cool stuff.

For such developers, hackathons provide the best platform to showcase their skills, connect with their peers, seek mentorship from the industry experts and get recognized.

Case in point: The recent Tesla hackathon, which aims to solve the two major problematic bottlenecks in the robots. Tesla’s aim here is not to outsource work to unpaid labor. It is to crowdsource innovative solutions for its pressing problems.

What about the developers? Are they being exploited?

If you have the opportunity to work on cutting-edge technology for one of the world’s leading firms transforming the face of the automobile industry and take a shot at solving its most pressing issue in 48 hours, it’s more upside than downside for you. A participant has a lot to gain for the time and effort he or she invests.

Apart from the monetary rewards which only goes to a small percentage of the participants, the real benefit for these developers is often intangible. As one of the participants of the recent International Women’s Hackathon 2018 puts it:

We tried to develop an app that helps answer Google forms through voice ‘Hear me Out’. Although we were not able to build a webapp which was what we had initially thought, just a prototype of a desktop app but the process of sitting together with coming up with an idea and coding was fun. In between the fun we learnt through errors and via helping each other and taking help of seniors and peers. Coding together with chips, maggi, coffee and friends in my room from evening to night and night to morning before the submission was enlightening and enjoyable.

– Disha Agarwal, Participant, Internation Women’s Hackathon

Stack Overflow surveyed 25,000+ developers worldwide to find out why they participated in hackathons.

Source: https://insights.stackoverflow.com/survey/2018/

Who owns the hackathon IPs?

In over 95% of the hackathons, the IPs belong to the participants. Although a majority of the companies still do not claim IP rights for the products created at a hackathon, there are still a few companies that do.

**But we advise participants to carefully read the T&C before signing up. Companies should ensure they communicate anything that is likely to be different from the usual T&C for such events.

Here is the T&C of a recent hackathon hosted by Intel.

Who owns the hackathon IPs?

Participants owning the ideas/IPs created at the hackathons and companies opting to buy the best ones is, however, a practice that is mutually beneficial and welcomed.

Here is another variation of the T&C for a hackathon hosted by Procter & Gamble.

Who owns the hackathon IPs?

Employees are obligated to participate in internal hackathons

Companies try to squeeze out innovation out of employees by conducting hackathons and employees are often obligated to participate.

Companies often struggle to come up with ways to engage with their employees in a more meaningful way. Ask any HR Manager or People Director; it is impossible to come up with an activity that pleases every employee.

A hackathon is one particular engagement that hits the sweet spot and many use internal hackathons as a tool for driving employee engagement and fostering a culture of innovation.

Hackathon-a perfect employee engagement tool

Hackathon is one of the very few activities that combine the four essential components of employee engagement. An employee engagement initiative should allow the employees to tap into their passion, enable them to make meaningful contributions to the company, offer recognition, and be engaging.

There could be instances where employees participate out of peer pressure and obligation. But this is not a hackathon-specific issue. Peer pressure at the workplace is common across companies. It is important that companies ensure hackathon participation is voluntary. Constraints might help innovation but not peer pressure and feeling obliged.

Innovations rarely come out of hackathons

The innovations hardly last beyond the hackathon. GroupMe and Skype are rare occurrences and exemptions.

The aim of the hackathon is not to create a blockbuster product, conjure groundbreaking innovations, or build a multi-million company in 48 hours. If that is the expectation, then it is clearly wrong.

The objective of a hackathon is to provide an avenue for experimenting ideas, exploring opportunities, and attempting to solve problems. If a company can spot interesting concepts, promising ideas, and creative solutions, it will further go through an extensive and rigorous process of evaluation, testing, and development before it can be rolled out.

A hackathon is a tool to seed the culture of innovation and meritocracy. It abides by the principle that good ideas can come from anywhere. It is just the starting process of the long and lengthy process of innovation filled with uncertainty. This infographic will give you an idea about the role of hackathons in the process of innovation.

Role of hackathon in the process of innovation

Not an effective recruiting tool

Unlike hiring challenges, a hackathon is not a recruitment tool and should not be used as one. Yes, sometimes companies do spot extraordinary talent and end up absorbing them. But it is just a byproduct and not a regular occurrence.

Neither feasible nor inventive

Hackathon projects are neither feasible nor inventive.

This is a common problem faced by hackathon hosts. The quality of the output does not always meet the expectation. However, over time, we found out that a few common factors affect the success of the hackathons.

  1. Defining problem/goal
  2. Providing the right contextual knowledge
  3. Marketing to the right audience
  4. Guidance and mentorship
  5. Setting the expectations right

Conclusion

There is no perfect tool for innovation. Every process, activity, and framework has its own merits and demerits. It is important to address the drawbacks. Without participants, a hackathon is futile. Hence, it is important to ensure the participants enjoy and gain value out of hackathons.

Overall, a hackathon is a very powerful tool for innovation, IF DONE RIGHT.

In the Spotlight

Technical Screening Guide: All You Need To Know

Read this guide and learn how you can establish a less frustrating developer hiring workflow for both hiring teams and candidates.
Read More
Mobile Left Background Image

Can we stay in touch?

We’d love to give you a free walkthrough of HackerEarth, so consider scheduling a free demo.
Get a free demoMobile Right Background Image
Authors

Meet our Authors

Get to know the experts behind our content. From industry leaders to tech enthusiasts, our authors share valuable insights, trends, and expertise to keep you informed and inspired.
Ruehie Jaiya Karri
Kumari Trishya

AI In Recruitment: The Good, The Bad, The Ugly

Artificial Intelligence (AI) has permeated virtually every industry, transforming operations and interactions. The tech recruitment sector is no exception, and AI’s influence shapes the hiring processes in revolutionary ways. From leveraging AI-powered chatbots for preliminary candidate screenings to deploying machine learning algorithms for efficient resume parsing, AI leaves an indelible mark on tech hiring practices.

Yet, amidst these promising advancements, we must acknowledge the other side of the coin: AI’s potential malpractices, including the likelihood of cheating on assessments, issues around data privacy, and the risk of bias against minority groups.

The dark side of AI in tech recruitment

Negative impact of AI

The introduction of AI in recruitment, while presenting significant opportunities, also brings with it certain drawbacks and vulnerabilities. Sophisticated technologies could enable candidates to cheat on assessments, misrepresent abilities and potential hiring mistakes. This could lead to hiring candidates with falsifying skills or qualifications, which can cause a series of negative effects like:

  • Reduced work quality: The work output might be sub-par if a candidate doesn’t genuinely possess the abilities they claimed to have.
  • Team disruptions: Other team members may have to pick up the slack, leading to resentment and decreased morale.
  • Rehiring costs: You might have to let go of such hires, resulting in additional costs for replacement.

Data privacy is another critical concern

Your company could be left exposed to significant risks if your AI recruiting software is not robust enough to protect sensitive employee information. The implications for an organization with insufficient data security could be severe such as:

  • Reputational damage: Breaches of sensitive employee data can damage your company’s reputation, making it harder to attract clients and talented employees in the future.
  • Legal consequences: Depending on the jurisdiction, you could face legal penalties, including hefty fines, for failing to protect sensitive data adequately.
  • Loss of trust: A data breach could undermine employee trust in your organization, leading to decreased morale and productivity.
  • Financial costs: Besides potential legal penalties, companies could also face direct financial losses from a data breach, including the costs of investigation, recovery, and measures to prevent future breaches.
  • Operational disruption: Depending on the extent of the breach, normal business operations could be disrupted, causing additional financial losses and damage to the organization’s reputation.

Let’s talk about the potential for bias in AI recruiting software

Perhaps the most critical issue of all is the potential for unconscious bias. The potential for bias in AI recruiting software stems from the fact that these systems learn from the data they are trained on. If the training data contains biases – for example, if it reflects a history of preferentially hiring individuals of a certain age, gender, or ethnicity – the AI system can learn and replicate these biases.

Even with unbiased data, if the AI’s algorithms are not designed to account for bias, they can inadvertently create it. For instance, a hiring algorithm that prioritizes candidates with more years of experience may inadvertently discriminate against younger candidates or those who have taken career breaks, such as for child-rearing or health reasons.

This replication and possible amplification of human prejudices can result in discriminatory hiring practices. If your organization’s AI-enabled hiring system is found to be biased, you could face legal action, fines, and penalties. Diversity is proven to enhance creativity, problem-solving, and decision-making. In contrast, bias in hiring can lead to a homogenous workforce, so its absence would likely result in a less innovative and less competitive organization.

Also read: What We Learnt From Target’s Diversity And Inclusion Strategy

When used correctly, AI in recruitment can take your hiring to the next level

How to use AI during hiring freeze

How do you evaluate the appropriateness of using AI in hiring for your organization? Here are some strategies for navigating the AI revolution in HR. These steps include building support for AI adoption, identifying HR functions that can be integrated with AI, avoiding potential pitfalls of AI use in HR, collaborating with IT leaders, and so on.

Despite certain challenges, AI can significantly enhance tech recruitment processes when used effectively. AI-based recruitment tools can automate many manual recruiting tasks, such as resume screening and interview scheduling, freeing up time for recruiters to focus on more complex tasks. Furthermore, AI can improve the candidate’s experience by providing quick responses and personalized communications. The outcome is a more efficient, candidate-friendly process, which could lead to higher-quality hires.

Let’s look at several transformational possibilities chatbots can bring to human capital management for candidates and hiring teams. This includes automation and simplifying various tasks across domains such as recruiting, onboarding, core HR, absence management, benefits, performance management, and employee self-service resulting in the following:

For recruiters:

  • Improved efficiency and productivity: Chatbots can handle routine tasks like responding to common inquiries or arranging interviews. Thereby, providing you with more time to concentrate on tasks of strategic importance.
  • Enhanced candidate experience: With their ability to provide immediate responses, chatbots can make the application process more engaging and user-friendly.
  • Data and insights: Chatbots can collect and analyze data from your interactions with candidates. And provide valuable insights into candidate preferences and behavior.
  • Improved compliance: By consistently following predefined rules and guidelines, chatbots can help ensure that hiring processes are fair and compliant with relevant laws and regulations.
  • Cost saving: By automating routine tasks for recruiters, chatbots can help reduce the labor costs associated with hiring.

Also read: 5 Steps To Create A Remote-First Candidate Experience In Recruitment

How FaceCode Can Help Improve Your Candidate Experience | AI in recruitment

For candidates:

Additionally, candidates can leverage these AI-powered chatbots in a dialog flow manner to carry out various tasks. These tasks include the following:

  • Personalized greetings: By using a candidate’s name and other personal information, chatbots can create a friendly, personalized experience.
  • Job search: They can help candidates search for jobs based on specific criteria.
  • Create a candidate profile: These AI-powered chatbots can guide candidates through the process of creating a profile. Thus, making it easier for them to apply for jobs.
  • Upload resume: Chatbots can instruct candidates on uploading their resume, eliminating potential confusion.
  • Apply for a job: They can streamline the application process, making it easier and faster for candidates to apply for jobs.
  • Check application status: Chatbots can provide real-time updates on a candidate’s application status.
  • Schedule interviews: They can match candidate and interviewer availability to schedule interviews, simplifying the process.

For hiring managers:

These can also be utilized by your tech hiring teams for various purposes, such as:

  • Create requisition: Chatbots can guide hiring managers through the process of creating a job requisition.
  • Create offers: They can assist in generating job offers, ensuring all necessary information is included.
  • Access requisition and offers: Using chatbots can provide hiring managers with easy access to job requisitions and offers.
  • Check on onboarding tasks: Chatbots can help track onboarding tasks, ensuring nothing is missed.

Other AI recruiting technologies can also enhance the hiring process for candidates and hiring teams in the following ways:

For candidates:

  1. Tailor-made resumes and cover letters using generative AI: Generative AI can help candidates create custom resumes and cover letters, increasing their chances of standing out.
  2. Simplifying the application process: AI-powered recruiting tools can simplify the application process, allowing candidates to apply for jobs with just a few clicks.
  3. Provide similar job recommendations: AI can analyze candidates’ skills, experiences, and preferences to recommend similar jobs they might be interested in.

For recruiters:

  • Find the best candidate: AI algorithms can analyze large amounts of data to help you identify the candidates most likely to succeed in a given role.
  • Extract key skills from candidate job applications: Save a significant amount of time and effort by using AI-based recruiting software to quickly analyze job applications to identify key skills, thereby, speeding up the screening process.
  • Take feedback from rejected candidates & share similar job recommendations: AI can collect feedback from rejected candidates for you to improve future hiring processes and recommend other suitable roles to the candidate.

These enhancements not only streamline the hiring process but also improve the quality of hires, reduce hiring biases, and improve the experience for everyone involved. The use of AI in hiring can indeed take it to the next level.

Where is AI in recruitment headed?

AI can dramatically reshape the recruitment landscape with the following key advancements:

1. Blockchain-based background verification:

Blockchain technology, renowned for its secure, transparent, and immutable nature, can revolutionize background checks. This process which can take anywhere from between a day to several weeks today for a single recruiter to do can be completed within a few clicks resulting in:

  • Streamlined screening process: Blockchain can store, manage, and share candidates’ credentials and work histories. Thereby speeding up the verification and screening process. This approach eliminates the need for manual background checks. And leads to freeing up a good amount of time for you to focus on more important tasks.
  • Enhanced trust and transparency: With blockchain, candidates, and employers can trust the validity of the information shared due to the nature of the technology. The cryptographic protection of blockchain ensures the data is tamper-proof, and decentralization provides transparency.
  • Improved data accuracy and reliability: Since the blockchain ledger is immutable, it enhances the accuracy and reliability of the data stored. This can minimize the risks associated with false information on candidates’ resumes.
  • Faster onboarding: A swift and reliable verification process means candidates can be onboarded more quickly. Thereby, improving the candidate experience and reducing the time-to-hire.
  • Expanded talent pool: With blockchain, it’s easier and quicker to verify the credentials of candidates globally, thereby widening the potential talent pool.

2. Immersive experiences using virtual reality (VR):

VR can provide immersive experiences that enhance various aspects of the tech recruitment process:

  • Interactive job previews: VR can allow potential candidates to virtually “experience” a day i.e., life at your company. This provides a more accurate and engaging job preview than traditional job descriptions.
  • Virtual interviews and assessments: You can use VR to conduct virtual interviews or assessments. You can also evaluate candidates in a more interactive and immersive setting. This can be particularly useful for roles that require specific spatial or technical skills.
  • Virtual onboarding programs: New hires can take a virtual tour of the office, meet their colleagues, and get acquainted with their tasks, all before their first day. This can significantly enhance the onboarding experience and help new hires feel more prepared.
  • Immersive learning experiences: VR can provide realistic, immersive learning experiences for job-specific training or to enhance soft skills. These could be used during the recruitment process or for ongoing employee development.

Also read: 6 Strategies To Enhance Candidate Engagement In Tech Hiring (+ 3 Unique Examples)

AI + Recruiters: It’s all about the balance!

To summarize, AI in recruitment is a double-edged sword, carrying both promise and potential problems. The key lies in how recruiters use this technology, leveraging its benefits while vigilantly managing its risks. AI isn’t likely to replace recruiters or HR teams in the near future. Instead, you should leverage this tool to positively impact the entire hiring lifecycle.

With the right balance and careful management, AI can streamline hiring processes. It can create better candidate experiences, and ultimately lead to better recruitment decisions. Recruiters should continually experiment with and explore generative AI. To devise creative solutions, resulting in more successful hiring and the perfect fit for every open role.

Looking For A Mettl Alternative? Let’s Talk About HackerEarth

“Every hire is an investment for a company. A good hire will give you a higher ROI; if it is a bad hire, it will cost you a lot of time and money.”

Especially in tech hiring!

An effective tech recruitment process helps you attract the best talents, reduce hiring costs, and enhance company culture and reputation.

Businesses increasingly depend on technical knowledge to compete in today’s fast-paced, technologically driven world. Online platforms that provide technical recruiting solutions have popped up to assist companies in finding and employing top talent in response to this demand.

The two most well-known platforms in this field are HackerEarth and Mettl. To help businesses make wise choices for their technical employment requirements, we will compare these two platforms’ features, benefits, and limitations in this article.

This comparison of Mettl alternative, HackerEarth and Mettl itself, will offer helpful information to help you make the best decision, whether you’re a small company trying to expand your tech staff or a massive organization needing a simplified recruiting process.

HackerEarth

HackerEarth is based in San Francisco, USA, and offers enterprise software to aid companies with technical recruitment. Its services include remote video interviewing and technical skill assessments that are commonly used by organizations.

HackerEarth also provides a platform for developers to participate in coding challenges and hackathons. In addition, it provides tools for technical hiring such as coding tests, online interviews, and applicant management features. The hiring solutions provided by HackerEarth aid companies assess potential employees’ technical aptitude and select the best applicants for their specialized positions.

Mettl

Mettl, on the other hand, offers a range of assessment solutions for various industries, including IT, banking, healthcare, and retail. It provides online tests for coding, linguistic ability, and cognitive skills. The tests offered by Mettl assist employers find the best applicants for open positions and make data-driven recruiting choices. Additionally, Mettl provides solutions for personnel management and staff training and development.

Why should you go for HackerEarth over Mercer Mettl?

Here's why HackerEarth is a great Mettl Alternative!

Because HackerEarth makes technical recruiting easy and fast, you must consider HackerEarth for technical competence evaluations and remote video interviews. It goes above and beyond to provide you with a full range of functions and guarantee the effectiveness of the questions in the database. Moreover, it is user-friendly and offers fantastic testing opportunities.

The coding assessments by HackerEarth guarantee the lowest time consumption and maximum efficiency. It provides a question bank of more than 17,000 coding-related questions and automated test development so that you can choose test questions as per the job role.

As a tech recruiter, you may need a clear understanding of a candidate’s skills. With HackerEarth’s code replay capability and insight-rich reporting on a developer’s performance, you can hire the right resource for your company.

Additionally, HackerEarth provides a more in-depth examination of your recruiting process so you can continuously enhance your coding exams and develop a hiring procedure that leads the industry.

HackerEarth and Mercer Mettl are the two well-known online tech assessment platforms that provide tools for managing and performing online examinations. We will examine the major areas where HackerEarth outperforms Mettl, thereby proving to be a great alternative to Mettl, in this comparison.

Also read: What Makes HackerEarth The Tech Behind Great Tech Teams

HackerEarth Vs Mettl

Features and functionality

HackerEarth believes in upgrading itself and providing the most effortless navigation and solutions to recruiters and candidates.

HackerEarth provides various tools and capabilities to create and administer online tests, such as programming tests, multiple-choice questions, coding challenges, and more. The software also has remote proctoring, automatic evaluation, and plagiarism detection tools (like detecting the use of ChatGPT in coding assessments). On the other side, Mettl offers comparable functionality but has restricted capabilities for coding challenges and evaluations.

Test creation and administration

HackerEarth: It has a user-friendly interface that is simple to use and navigate. It makes it easy for recruiters to handle evaluations without zero technical know-how. The HackerEarth coding platform is also quite flexible and offers a variety of pre-built exams, including coding tests, aptitude tests, and domain-specific examinations. It has a rich library of 17,000+ questions across 900+ skills, which is fully accessible by the hiring team. Additionally, it allows you to create custom questions yourself or use the available question libraries.

Also read: How To Create An Automated Assessment With HackerEarth

Mettl: It can be challenging for a hiring manager to use Mettl efficiently since Mettl provides limited assessment and question libraries. Also, their team creates the test for them rather than giving access to hiring managers. This results in a higher turnaround time and reduces test customization possibilities since the request has to go back to the team, they have to make the changes, and so forth.

Reporting and analytics

HackerEarth: You may assess applicant performance and pinpoint areas for improvement with the help of HackerEarth’s full reporting and analytics tools. Its personalized dashboards, visualizations, and data exports simplify evaluating assessment results and real-time insights.

Most importantly, HackerEarth includes code quality scores in candidate performance reports, which lets you get a deeper insight into a candidate’s capabilities and make the correct hiring decision. Additionally, HackerEarth provides a health score index for each question in the library to help you add more accuracy to your assessments. The health score is based on parameters like degree of difficulty, choice of the programming language used, number of attempts over the past year, and so on.

Mettl: Mettl online assessment tool provides reporting and analytics. However, there may be only a few customization choices available. Also, Mettle does not provide code quality assurance which means hiring managers have to check the whole code manually. There is no option to leverage question-based analytics and Mettl does not include a health score index for its question library.

Adopting this platform may be challenging if you want highly customized reporting and analytics solutions.

Also read: HackerEarth Assessments + The Smart Browser: Formula For Bulletproof Tech Hiring

Security and data privacy

HackerEarth: The security and privacy of user data are top priorities at HackerEarth. The platform protects data in transit and at rest using industry-standard encryption. Additionally, all user data is kept in secure, constantly monitored data centers with stringent access controls.

Along with these security measures, HackerEarth also provides IP limitations, role-based access controls, and multi-factor authentication. These features ensure that all activity is recorded and audited and that only authorized users can access sensitive data.

HackerEarth complies with several data privacy laws, such as GDPR and CCPA. The protection of candidate data is ensured by this compliance, which also enables businesses to fulfill their legal and regulatory responsibilities.

Mettl: The security and data privacy features of Mettl might not be as strong as those of HackerEarth. The platform does not provide the same selection of security measures, such as IP limitations or multi-factor authentication. Although the business asserts that it complies with GDPR and other laws, it cannot offer the same amount of accountability and transparency as other platforms.

Even though both HackerEarth and Mettl include security and data privacy measures, the Mettle alternative, HackerEarth’s platform is made to be more thorough, open, and legal. By doing this, businesses can better guarantee candidate data’s security and ability to fulfill legal and regulatory requirements.

Pricing and support

HackerEarth: To meet the demands of businesses of all sizes, HackerEarth offers a variety of customizable pricing options. The platform provides yearly and multi-year contracts in addition to a pay-as-you-go basis. You can select the price plan that best suits their demands regarding employment and budget.

HackerEarth offers chat customer support around the clock. The platform also provides a thorough knowledge base and documentation to assist users in getting started and troubleshooting problems.

Mettl: The lack of price information on Mettl’s website might make it challenging for businesses to decide whether the platform fits their budget. The organization also does not have a pay-as-you-go option, which might be problematic.

Mettl offers phone and emails customer assistance. However, the business website lacks information on support availability or response times. This lack of transparency may be an issue if you need prompt and efficient help.

User experience

HackerEarth: The interface on HackerEarth is designed to be simple for both recruiters and job seekers. As a result of the platform’s numerous adjustable choices for test creation and administration, you may design exams specifically suited to a job role. Additionally, the platform provides a selection of question types and test templates, making it simple to build and take exams effectively.

In terms of the candidate experience, HackerEarth provides a user-friendly interface that makes navigating the testing procedure straightforward and intuitive for applicants. As a result of the platform’s real-time feedback and scoring, applicants may feel more motivated and engaged during the testing process. The platform also provides several customization choices, like branding and message, which may assist recruiters in giving prospects a more exciting and tailored experience.

Mettl: The platform is intended to have a steeper learning curve than others and be more technical. It makes it challenging to rapidly and effectively construct exams and can be difficult for applicants unfamiliar with the platform due to its complex interface.

Additionally, Mettl does not provide real-time feedback or scoring, which might deter applicants from participating and being motivated by the testing process.

Also read: 6 Strategies To Enhance Candidate Engagement In Tech Hiring (+ 3 Unique Examples)

User reviews and feedback

According to G2, HackerEarth and Mettl have 4.4 reviews out of 5. Users have also applauded HackerEarth’s customer service. Many agree that the staff members are friendly and quick to respond to any problems or queries. Overall, customer evaluations and feedback for HackerEarth point to the platform as simple to use. Both recruiters and applicants find it efficient.

Mettl has received mixed reviews from users, with some praising the platform for its features and functionality and others expressing frustration with its complex and technical interface.

Free ebook to help you choose between Mettl and Mettle alternative, HackerEarth

May the best “brand” win!

Recruiting and selecting the ideal candidate demands a significant investment of time, attention, and effort.

This is where tech recruiting platforms like HackerEarth and Mettl have got you covered. They help streamline the whole process.Both HackerEarth and Mettl provide a wide variety of advanced features and capabilities for tech hiring.

We think HackerEarth is the superior choice. Especially, when contrasting the two platforms in terms of their salient characteristics and functioning. But, we may be biased!

So don’t take our word for it. Sign up for a free trial and check out HackerEarth’s offerings for yourself!

HackerEarth Assessments + The Smart Browser: Formula For Bulletproof Tech Hiring

Let’s face it—cheating on tests is quite common. While technology has made a lot of things easier in tech recruiting, it has also left the field wide open to malpractice. A 2020 report by ICAI shows that 32% of undergraduate students have cheated in some form on an online test.

It’s human nature to want to bend the rules a little bit. Which begs the question, how do you stay on top of cheating, plagiarism, and other forms of malpractice during the assessment process?

How do you ensure that take-home assessments and remote interviews stay authentic and credible? By relying on enhanced virtual supervision, of course!

HackerEarth Assessments has always been one step ahead when it comes to remote proctoring which is able to capture the nuances of candidate plagiarism. The recent advancements in technology (think generative AI) needed more robust proctoring features, so we went ahead and built The HackerEarth Smart Browser to ensure our assessments remain as foolproof as ever.

Presenting to you, the latest HackerEarth proctoring fix - The Smart Browser

Our Smart Browser is the chocolatey version of a plain donut when compared to a regular web browser. It is extra effective and comes packed with additional remote proctoring capabilities to increase the quality of your screening assessments.

The chances of a candidate cheating on a HackerEarth technical assessment are virtually zero with the latest features! Spilling all our secrets to show you why -

1. Sealed-off testing environment makes proctoring simpler

Sealed-off testing environment makes proctoring simpler

To get started with using the Smart Browser, enable the Smart Browser setting as shown above. This setting is available under the test proctoring section on the test overview page.

As you can see, several other proctoring settings such as disabling copy-paste, restricting candidates to full-screen mode, and logout on leaving the test interface are selected automatically.Now, every candidate you invite to take the assessment will only be able to do so through the Smart Browser. Candidates are prompted to download the Smart Browser from the link shared in the test invite mail.When the candidate needs to click on the ‘start test’ button on the launch test screen, it opens in the Smart Browser. The browser also prompts the candidate to switch to full-screen mode. Now, all candidates need to do is sign in and attempt the test, as usual.
Also read: 6 Ways Candidates Try To Outsmart A Remote Proctored Assessment

2. Eagle-eyed online test monitoring leaves no room for error

Eagle-eyed online test monitoring with the smart browser leaves no room for errorOur AI-enabled Smart Browser takes frequent snapshots via the webcam, throughout the assessment. Consequently, it is impossible to copy-paste code or impersonate a candidate.The browser prevents the following candidate actions and facilitates thorough monitoring of the assessment:
  • Screensharing the test window
  • Keeping other applications open during the test
  • Resizing the test window
  • Taking screenshots of the test window
  • Recording the test window
  • Using malicious keystrokes
  • Viewing OS notifications
  • Running the test window within a virtual machine
  • Operating browser developer tools
Any candidate actions attempting to switch tabs with the intent to copy-paste or use a generative AI like ChatGPT are shown a warning and captured in the candidate report.HackerEarth’s latest proctoring fixes bulletproof our assessment platform, making it one of the most reliable and accurate sources of candidate hiring in the market today.
Also read: 4 Ways HackerEarth Flags The Use Of ChatGPT In Tech Hiring Assessments

Experience reliable assessments with the Smart Browser!

There you have it - our newest offering that preserves the integrity of coding assessments and enables skill-first hiring, all in one go. Recruiters and hiring managers, this is one feature that you can easily rely on and can be sure that every candidate’s test score is a result of their ability alone.Curious to try out the Smart Browser? Well, don’t take our word for it. Head over here to check it out for yourself!

We also love hearing from our customers so don’t hesitate to leave us any feedback you might have.

Until then, happy hiring!
View all

What is Headhunting In Recruitment?: Types & How Does It Work?

In today’s fast-paced world, recruiting talent has become increasingly complicated. Technological advancements, high workforce expectations and a highly competitive market have pushed recruitment agencies to adopt innovative strategies for recruiting various types of talent. This article aims to explore one such recruitment strategy – headhunting.

What is Headhunting in recruitment?

In headhunting, companies or recruitment agencies identify, engage and hire highly skilled professionals to fill top positions in the respective companies. It is different from the traditional process in which candidates looking for job opportunities approach companies or recruitment agencies. In headhunting, executive headhunters, as recruiters are referred to, approach prospective candidates with the hiring company’s requirements and wait for them to respond. Executive headhunters generally look for passive candidates, those who work at crucial positions and are not on the lookout for new work opportunities. Besides, executive headhunters focus on filling critical, senior-level positions indispensable to companies. Depending on the nature of the operation, headhunting has three types. They are described later in this article. Before we move on to understand the types of headhunting, here is how the traditional recruitment process and headhunting are different.

How do headhunting and traditional recruitment differ from each other?

Headhunting is a type of recruitment process in which top-level managers and executives in similar positions are hired. Since these professionals are not on the lookout for jobs, headhunters have to thoroughly understand the hiring companies’ requirements and study the work profiles of potential candidates before creating a list.

In the traditional approach, there is a long list of candidates applying for jobs online and offline. Candidates approach recruiters for jobs. Apart from this primary difference, there are other factors that define the difference between these two schools of recruitment.

AspectHeadhuntingTraditional RecruitmentCandidate TypePrimarily passive candidateActive job seekersApproachFocused on specific high-level rolesBroader; includes various levelsScopeproactive outreachReactive: candidates applyCostGenerally more expensive due to expertise requiredTypically lower costsControlManaged by headhuntersManaged internally by HR teams

All the above parameters will help you to understand how headhunting differs from traditional recruitment methods, better.

Types of headhunting in recruitment

Direct headhunting: In direct recruitment, hiring teams reach out to potential candidates through personal communication. Companies conduct direct headhunting in-house, without outsourcing the process to hiring recruitment agencies. Very few businesses conduct this type of recruitment for top jobs as it involves extensive screening across networks outside the company’s expanse.

Indirect headhunting: This method involves recruiters getting in touch with their prospective candidates through indirect modes of communication such as email and phone calls. Indirect headhunting is less intrusive and allows candidates to respond at their convenience.Third-party recruitment: Companies approach external recruitment agencies or executive headhunters to recruit highly skilled professionals for top positions. This method often leverages the company’s extensive contact network and expertise in niche industries.

How does headhunting work?

Finding highly skilled professionals to fill critical positions can be tricky if there is no system for it. Expert executive headhunters employ recruitment software to conduct headhunting efficiently as it facilitates a seamless recruitment process for executive headhunters. Most software is AI-powered and expedites processes like candidate sourcing, interactions with prospective professionals and upkeep of communication history. This makes the process of executive search in recruitment a little bit easier. Apart from using software to recruit executives, here are the various stages of finding high-calibre executives through headhunting.

Identifying the role

Once there is a vacancy for a top job, one of the top executives like a CEO, director or the head of the company, reach out to the concerned personnel with their requirements. Depending on how large a company is, they may choose to headhunt with the help of an external recruiting agency or conduct it in-house. Generally, the task is assigned to external recruitment agencies specializing in headhunting. Executive headhunters possess a database of highly qualified professionals who work in crucial positions in some of the best companies. This makes them the top choice of conglomerates looking to hire some of the best talents in the industry.

Defining the job

Once an executive headhunter or a recruiting agency is finalized, companies conduct meetings to discuss the nature of the role, how the company works, the management hierarchy among other important aspects of the job. Headhunters are expected to understand these points thoroughly and establish a clear understanding of their expectations and goals.

Candidate identification and sourcing

Headhunters analyse and understand the requirements of their clients and begin creating a pool of suitable candidates from their database. The professionals are shortlisted after conducting extensive research of job profiles, number of years of industry experience, professional networks and online platforms.

Approaching candidates

Once the potential candidates have been identified and shortlisted, headhunters move on to get in touch with them discreetly through various communication channels. As such candidates are already working at top level positions at other companies, executive headhunters have to be low-key while doing so.

Assessment and Evaluation

In this next step, extensive screening and evaluation of candidates is conducted to determine their suitability for the advertised position.

Interviews and negotiations

Compensation is a major topic of discussion among recruiters and prospective candidates. A lot of deliberation and negotiation goes on between the hiring organization and the selected executives which is facilitated by the headhunters.

Finalizing the hire

Things come to a close once the suitable candidates accept the job offer. On accepting the offer letter, headhunters help finalize the hiring process to ensure a smooth transition.

The steps listed above form the blueprint for a typical headhunting process. Headhunting has been crucial in helping companies hire the right people for crucial positions that come with great responsibility. However, all systems have a set of challenges no matter how perfect their working algorithm is. Here are a few challenges that talent acquisition agencies face while headhunting.

Common challenges in headhunting

Despite its advantages, headhunting also presents certain challenges:

Cost Implications: Engaging headhunters can be more expensive than traditional recruitment methods due to their specialized skills and services.

Time-Consuming Process: While headhunting can be efficient, finding the right candidate for senior positions may still take time due to thorough evaluation processes.

Market Competition: The competition for top talent is fierce; organizations must present compelling offers to attract passive candidates away from their current roles.

Although the above mentioned factors can pose challenges in the headhunting process, there are more upsides than there are downsides to it. Here is how headhunting has helped revolutionize the recruitment of high-profile candidates.

Advantages of Headhunting

Headhunting offers several advantages over traditional recruitment methods:

Access to Passive Candidates: By targeting individuals who are not actively seeking new employment, organisations can access a broader pool of highly skilled professionals.

Confidentiality: The discreet nature of headhunting protects both candidates’ current employment situations and the hiring organisation’s strategic interests.

Customized Search: Headhunters tailor their search based on the specific needs of the organization, ensuring a better fit between candidates and company culture.

Industry Expertise: Many headhunters specialise in particular sectors, providing valuable insights into market dynamics and candidate qualifications.

Conclusion

Although headhunting can be costly and time-consuming, it is one of the most effective ways of finding good candidates for top jobs. Executive headhunters face several challenges maintaining the g discreetness while getting in touch with prospective clients. As organizations navigate increasingly competitive markets, understanding the nuances of headhunting becomes vital for effective recruitment strategies. To keep up with the technological advancements, it is better to optimise your hiring process by employing online recruitment software like HackerEarth, which enables companies to conduct multiple interviews and evaluation tests online, thus improving candidate experience. By collaborating with skilled headhunters who possess industry expertise and insights into market trends, companies can enhance their chances of securing high-caliber professionals who drive success in their respective fields.

A Comprehensive Guide to External Sources of Recruitment

The job industry is not the same as it was 30 years ago. Progresses in AI and automation have created a new work culture that demands highly skilled professionals who drive innovation and work efficiently. This has led to an increase in the number of companies reaching out to external sources of recruitment for hiring talent. Over the years, we have seen several job aggregators optimise their algorithms to suit the rising demand for talent in the market and new players entering the talent acquisition industry. This article will tell you all about how external sources of recruitment help companies scout some of the best candidates in the industry, the importance of external recruitment in organizations across the globe and how it can be leveraged to find talent effectively.

Understanding external sources of recruitment

External sources refer to recruitment agencies, online job portals, job fairs, professional associations and any other organizations that facilitate seamless recruitment. When companies employ external recruitment sources, they access a wider pool of talent which helps them find the right candidates much faster than hiring people in-house. They save both time and effort in the recruitment process.

Online job portals

Online resume aggregators like LinkedIn, Naukri, Indeed, Shine, etc. contain a large database of prospective candidates. With the advent of AI, online external sources of recruitment have optimised their algorithms to show the right jobs to the right candidates. Once companies figure out how to utilise job portals for recruitment, they can expedite their hiring process efficiently.

Social Media

Ours is a generation that thrives on social media. To boost my IG presence, I have explored various strategies, from getting paid Instagram users to optimizing post timing and engaging with my audience consistently. Platforms like FB an IG have been optimized to serve job seekers and recruiters alike. The algorithms of social media platforms like Facebook and Instagram have been optimised to serve job seekers and recruiters alike. Leveraging them to post well-placed ads for job listings is another way to implement external sources of recruitment strategies.

Employee Referrals

Referrals are another great external source of recruitment for hiring teams. Encouraging employees to refer their friends and acquaintances for vacancies enables companies to access highly skilled candidates faster.

Campus Recruitment

Hiring freshers from campus allows companies to train and harness new talent. Campus recruitment drives are a great external recruitment resource where hiring managers can expedite the hiring process by conducting screening processes in short periods.

Recruitment Agencies

Companies who are looking to fill specific positions with highly skilled and experienced candidates approach external recruitment agencies or executive headhunters to do so. These agencies are well-equipped to look for suitable candidates and they also undertake the task of identifying, screening and recruiting such people.

Job Fairs

This is a win-win situation for job seekers and hiring teams. Job fairs allow potential candidates to understand how specific companies work while allowing hiring managers to scout for potential candidates and proceed with the hiring process if possible.

Importance of External Recruitment

The role of recruitment agencies in talent acquisition is of paramount importance. They possess the necessary resources to help companies find the right candidates and facilitate a seamless hiring process through their internal system. Here is how external sources of recruitment benefit companies.

Diversity of Skill Sets

External recruitment resources are a great way for companies to hire candidates with diverse professional backgrounds. They possess industry-relevant skills which can be put to good use in this highly competitive market.

Fresh Perspectives

Candidates hired through external recruitment resources come from varied backgrounds. This helps them drive innovation and run things a little differently, thus bringing in a fresh approach to any project they undertake.

Access to Specialized Talent

Companies cannot hire anyone to fill critical roles that require highly qualified executives. This task is assigned to executive headhunters who specialize in identifying and screening high-calibre candidates with the right amount of industry experience. Huge conglomerates and companies seek special talent through external recruiters who have carved a niche for themselves.

Now that you have learnt the different ways in which leveraging external sources of recruitment benefits companies, let’s take a look at some of the best practices of external recruitment to understand how to effectively use their resources.

Best Practices for Effective External Recruitment

Identifying, reaching out to and screening the right candidates requires a robust working system. Every system works efficiently if a few best practices are implemented. For example, hiring through social media platforms requires companies to provide details about their working environment, how the job is relevant to their audience and well-positioned advertisements. The same applies to the other external sources of recruitment. Here is how you can optimise the system to ensure an effective recruitment process.

Craft Clear and Compelling Job Descriptions

Detail Responsibilities: Clearly outline the key responsibilities and expectations for the role.

Highlight Company Culture: Include information about the company’s mission, values, and growth opportunities to attract candidates who align with your organizational culture.

Leverage Multiple Recruitment Channels

Diversify Sources: Use a mix of job boards, social media platforms, recruitment agencies, and networking events to maximize reach. Relying on a single source can limit your candidate pool.

Utilize Industry-Specific Platforms: In addition to general job boards, consider niche job sites that cater to specific industries or skill sets

Streamline the Application Process

Simplify Applications: Ensure that the application process is user-friendly. Lengthy or complicated forms can deter potential candidates from applying.

Mobile Optimization: Many candidates use mobile devices to apply for jobs, so ensure your application process is mobile-friendly.

Engage in Proactive Sourcing

Reach Out to Passive Candidates: Actively seek out candidates who may not be actively looking for a job but could be a great fit for your organization. Use LinkedIn and other professional networks for this purpose.

Maintain a Talent Pool: Keep a database of previous applicants and strong candidates for future openings, allowing you to reach out when new roles become available.

Utilize Social Media Effectively

Promote Job Openings: Use social media platforms like LinkedIn, Facebook, and Twitter to share job postings and engage with potential candidates. This approach can also enhance your employer brand

Conduct Background Checks: There are several ways of learning about potential candidates. Checking out candidate profiles on job boards like LinkedIn or social media platforms can give companies a better understanding of their potential candidates, thus confirming whether they are the right fit for the organization.

Implement Data-Driven Recruitment

Analyze Recruitment Metrics: Track key metrics such as time-to-hire, cost-per-hire, and source effectiveness. This data can help refine your recruitment strategies over time. Using external hiring software like HackeEarth can streamline the recruitment process, thus ensuring quality hires without having to indulge internal resources for the same.

Use Predictive Analytics: In this age of fast paced internet, everybody makes data-driven decisions. Using predictive analytics to study employee data will help companies predict future trends, thus facilitating a productive hiring process.

Conclusion

External sources of recruitment play a very important role in an organization’s talent acquisition strategy. By employing various channels of recruitment such as social media, employee referrals and campus recruitment drives, companies can effectively carry out their hiring processes. AI-based recruitment management systems also help in the process. Implementing best practices in external recruitment will enable organizations to enhance their hiring processes effectively while meeting their strategic goals.

Progressive Pre-Employment Assessment - A Complete Guide

The Progressive Pre-Employment Assessment is a crucial step in the hiring process, as it evaluates candidates through various dimensions including cognitive abilities, personality traits, and role-specific skills.

While employers and recruiters have this in the palm of their hand, candidates who master it will successfully navigate the assessment and have a higher chance of landing that dream job. But what does it entail in the first place?

Candidates can expect to undergo tests that assess verbal, numerical, and work style capabilities, as well as a personality assessment. Hence, understanding the structure and purpose of the Progressive Pre-Employment Assessment can give candidates a competitive edge. But before one tackles online tests, we must first dissect what this assessment is and what it consists of.

The evolution of pre-employment assessments

Pre-employment assessments have undergone significant changes over the decades, from rudimentary tests to sophisticated, modern evaluations. Let’s put the two side by side.

  • Traditional methods:

    Initially, pre-employment assessments focused on basic skills and educational qualifications. These paper-based tests primarily assessed cognitive and verbal abilities, without any conclusions about the candidates’ output in very specific situations.

  • Modern techniques:

    Today, online assessments are prevalent, evaluating a variety of dimensions, including cognitive skills, personality traits, and behavioral evaluations. These tools offer a more comprehensive view of a candidate's job performance potential, while, at the same time, saving precious time for both parties involved.

In today’s competitive job market, progressive pre-employment assessments play a crucial as they not only measure technical skills and knowledge but also provide insights into a candidate's ethical bias, cultural fit, and communication skills.

Likewise, assessment tests have evolved to include situational judgment tests and culture fit analyses, which are pivotal in assessing the suitability of a candidate for specific roles. And this isn’t just in terms of skillsets—they help in identifying candidates who align well with the company's values and working environment.

This is mainly for the tests’ ability to accurately gauge a candidate's interpersonal skills and emotional intelligence, which are essential for roles that require teamwork and client interactions.

What are progressive pre-employment assessments?

Progressive pre-employment assessments are structured evaluations designed to judge a candidate’s abilities and fit for a role at Progressive Insurance. Unlike traditional aptitude tests, these assessments encompass various elements such as cognitive abilities, situational judgments, and personality traits.

These tests typically include verbal and numerical reasoning sections, as well as work style assessments that gauge behavioral tendencies. Through this merger of multiple dimensions, Progressive seeks to understand not just the skills and knowledge of the candidate, but also their ethical perspectives and communication skills.

Components of a progressive assessment strategy

What sets progressive assessments apart? Well, as most employers just focus on the basic credentials and competencies, the comprehensive assessment strategy at Progressive includes several key components:

  1. Cognitive evaluations: These tests measure candidates' logical reasoning and problem-solving capabilities through verbal, numerical, and abstract reasoning questions.
  2. Personality assessments: These tests evaluate traits and tendencies to understand how a candidate might behave in various workplace scenarios. They aim to provide insight into their ethical bias and interpersonal skills.
  3. Behavioral evaluations: These sections analyze how candidates might act in specific situations, ensuring a good cultural fit and alignment with Progressive's values.
  4. Role-specific skills tests: These assessments focus on the specialized skills required for the position, ensuring the candidate has the necessary technical knowledge and expertise.

Implementing progressive assessments

Successful implementation of Progressive Assessments in the hiring process requires designing an effective assessment process and following best practices for administration. This ensures accuracy, better data security, and reliable decision-making. In particular, the implementation hinges on the feasibility of the original design.

Step 1 --- Designing the assessment process

Designing an effective Progressive Assessment involves understanding the specific needs of the role and the company's approach to hiring. Each test component — verbal, numerical, and work style — must align with the desired skills and personality traits for the role.

HR teams need to define clear objectives for each assessment section. This includes establishing what each part aims to evaluate, like the problem-solving or personality assessments. Incorporating legal and policy guidelines ensures the assessments are fair and non-discriminatory, which is crucial for avoiding legal issues.

Likewise, everaging online assessment tests provides flexibility and efficiency. These tests allow candidates to complete them remotely, easing logistics and scheduling concerns. Ensuring security is also essential, and implementing testing and other recruitment tools can help enhance data security and accuracy.

Step 2 --- Best practices for assessment administration

Administering assessments effectively revolves around consistency and fairness. Establish structured guidelines for the administration process to ensure each candidate undergoes the same conditions, promoting reliability. This includes standardizing the timing, environment, and instructions for all assessments.

Training HR representatives is vital. They should be well-versed in handling the assessments, from initial candidate interactions to evaluating the results. Regular training updates ensure the team remains knowledgeable about best practices and any new tools used in the assessment process.

Administering assessments also involves maintaining better data security and accuracy. This is achieved by utilizing secure online platforms and ensuring that only authorized personnel have access to sensitive data. Leveraging top API penetration testing tools is one approach to securing candidate data and preserving the integrity of the assessment process.

Implementing consistent feedback mechanisms for candidates can also improve the process. Providing insights on their performance helps candidates understand their strengths and areas for growth, which reflects positively on the company’s commitment to candidate experience.

Benefits of progressive assessments

Progressive assessments offer significant advantages in the hiring process, such as improving the accuracy of hiring decisions and enhancing the overall candidate experience. These benefits help companies find better-fitting candidates and reduce turnover rates.

1. Improved hiring accuracy

Progressive pre-employment assessments allow companies to evaluate candidates more comprehensively. By assessing personality traits, cognitive abilities, and ethical biases, employers can identify individuals who align with the company’s values and have the necessary skills for the job.

For example, personality assessments can pinpoint traits like empathy, communication, and problem-solving abilities. This helps employers select candidates who are not only qualified but also fit well within the team. Evaluating these qualities ensures that new hires can thrive in customer service roles where empathy and effective communication are crucial.

Moreover, using tools like the DDI Adaptive Reasoning Test helps to simulate real job tasks. This gives employers deeper insights into a candidate's capability to handle job-specific challenges. As a result, the company is more likely to experience lower turnover rates due to better candidate-job fit.

2. Enhanced candidate experience

A well-structured assessment process can significantly enhance the candidate experience. Clear instructions,fair testing procedures, and timely feedback create a positive impression of the company. Candidates appreciate transparency and feel valued when the process is designed with their experience in mind.

Implementing assessments that reflect actual job roles and responsibilities gives candidates a realistic preview of the job. This reduces later dissatisfaction and turnover. Additionally, personality assessments that highlight traits such as confidence and empathy provide a more engaging candidate experience.

Companies can also strengthen their employer brand by showcasing their commitment to a fair and comprehensive hiring process. Providing resources like practice tests helps candidates feel better prepared and less anxious about the assessment, leading to a more positive perception of the company.

Common pitfalls in progressive assessments

Candidates often struggle with the cognitive abilities section, which requires strong analytical skills and problem-solving capabilities. The situational judgment tests can also be tricky as they assess empathy, decision-making, and customer service scenarios. Personality assessments can pose challenges as well, especially for those unsure how to present their personality traits aligned with the job role.

A significant issue is also misinterpretation of the test's format and expectations. Many find it daunting to navigate through various sections, such as verbal, numerical, and work style assessments. Lastly, some candidates might overlook the legal nuances of personality assessments or document redaction protocols, leading to compliance issues.

Strategies to overcome challenges

To tackle cognitive abilities assessments, candidates should engage in consistent practice with sample questions and mock tests. This helps enhance their analytical and problem-solving skills. For situational judgment tests, it is essential to practice empathy and customer service scenarios to develop a better understanding of role-specific challenges.

In personality assessments, being honest while demonstrating relevant personality traits like being a team player is crucial. Seeking guidance from study materials such as Job Test Prep can provide a realistic testing environment.

Understanding legal considerations, such as those around document redaction, is important for compliance. Utilizing a document redaction SDK can ensure adherence to required policies. Familiarity with each section's format will aid in navigating the assessments confidently and effectively.

Trends and innovations in employee assessments

There is a growing emphasis on AI-powered assessments —these tools analyze vast amounts of data to predict a candidate's job performance, ensuring a more objective and efficient selection process.



Personality assessments are evolving to include metrics like empathy and communication skills, which are crucial for roles in customer service and other people-centric positions.

Additionally, gamified assessments, which make the evaluation process engaging, are gaining popularity. They not only assess problem-solving skills but also gauge how candidates perform under pressure.

Organizations can prepare for the future by integrating cutting-edge technologies into their hiring processes. Investing in training for evaluators to accurately interpret new assessment metrics is crucial. This involves

understanding how to measure soft skills such as empathy and effective communication.

Moreover, companies should stay updated on legal requirements to maintain compliance and ensure fair assessment practices.

Encouraging candidates to focus on developing their personality traits, such as being team players and showing confidence, can also better prepare them for progressive assessments that look beyond technical skills.

The strategic value of progressive assessments

Progressive pre-employment assessments rigorously evaluate candidates on multiple fronts, including cognitive abilities, situational judgment, personality fit, and role-specific skills. This multifaceted approach not only helps in identifying the best match for specific roles but also reduces the risk of bad hires.

By investing in these assessments, companies can significantly enhance their recruitment processes. Consistent use of these tools leads to more informed decision-making, reducing turnover rates and ensuring employee retention.



Appropriate preparation and implementation of these assessments can streamline the hiring pipeline, saving time and resources. Furthermore, this approach bolsters team performance and aligns employee roles with their strengths, promoting a culture of efficiency and productivity. While Progressive is far from the only company using this approach, they’ve set a standard in terms of looking at candidates holistically and making sure they’re truly ready for the job.

Frequently Asked Questions

This section covers common inquiries related to the Progressive Pre-Employment Assessments, including differences from psychometric tests, benefits for small businesses, legal considerations, and the role of technology.

How do progressive assessments differ from psychometric testing?

Progressive assessments typically examine a candidate's ethical bias and personality traits. In contrast, psychometric tests focus on cognitive abilities and personality dimensions. The Progressive Pre-Employment Assessment includes verbal, numerical, and work style components, offering a broader evaluation spectrum.

Can small businesses benefit from implementing progressive assessment strategies?

Small businesses can gain significant advantages from adopting progressive assessment strategies. These assessments help identify candidates that align closely with the company’s values and culture, reducing turnover rates. Additionally, they provide insights into a candidate's ethical stance and work style, which are crucial for cohesive team dynamics.

What are the legal considerations when using pre-employment assessments?

Legal considerations include ensuring compliance with equal employment opportunity laws and avoiding discrimination based on race, gender, or disability. It is essential to validate the assessment tools and ensure they are scientifically proven to be fair. Companies must also maintain transparency about the purpose and usage of the assessments.

How can technology enhance the effectiveness of progressive assessments?

Technology can streamline the assessment process by allowing candidates to complete the tests remotely. Advanced analytics help in the accurate interpretation of results, ensuring a better match between the candidate and the job role. Many platforms offer practice tests that mirror the actual assessment, aiding in preparation and reducing test anxiety.

View all

Stay Informed with the HackerEarth Blog

Explore industry insights, expert opinions, and the latest trends in technology, hiring, and innovation.