Blog

Level Up with HackerEarth

Where innovation meets insight.
Explore expert perspectives, emerging tech trends, and real-world stories in coding, hiring, AI, and hackathons. Whether you're building, hiring, or learning — this is your go-to hub for sharp insights and practical knowledge from across the global developer ecosystem.
Featured and trending

Stay Ahead with the HackerEarth Blog

Dive into the latest in tech innovation, industry updates, and thought leadership. Discover what’s shaping the future — one post at a time.
Arrow Left
Arrow right

Vibe Coding: Shaping the Future of Software

A New Era of Code Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change Discover how vibe coding is reshaping software development. Learn about its benefits, challenges, and what it means for developers in the AI era.
Author
Vishwastam Shukla
Calendar Icon
June 25, 2025
Timer Icon
3 min read

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

How Candidates Use Technology to Cheat in Online Technical Assessments

Discover common technologies used by candidates for cheating in online assessments. Explore effective prevention methods like proctoring, AI monitoring, and smart test formats.
Author
Nischal V Chadaga
Calendar Icon
June 25, 2025
Timer Icon
3 min read

Impact of Online Assessments in Technical Hiring


In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers.

The ease and efficiency of virtual interviews, take home programming tests and remote coding challenges is transformative. Around 82% of companies use pre-employment assessments as reliable indicators of a candidate's skills and potential.

Online skill assessment tests have been proven to streamline technical hiring and enable recruiters to significantly reduce the time and cost to identify and hire top talent.

In the realm of online assessments, remote assessments have transformed the hiring landscape, boosting the speed and efficiency of screening and evaluating talent. On the flip side, candidates have learned how to use creative methods and AI tools to cheat in tests.

As it turns out, technology that makes hiring easier for recruiters and managers - is also their Achilles' heel.

Cheating in Online Assessments is a High Stakes Problem



With the proliferation of AI in recruitment, the conversation around cheating has come to the forefront, putting recruiters and hiring managers in a bit of a flux.



According to research, nearly 30 to 50 percent of candidates cheat in online assessments for entry level jobs. Even 10% of senior candidates have been reportedly caught cheating.

The problem becomes twofold - if finding the right talent can be a competitive advantage, the consequences of hiring the wrong one can be equally damaging and counter-productive.

As per Forbes, a wrong hire can cost a company around 30% of an employee's salary - not to mention, loss of precious productive hours and morale disruption.

The question that arises is - "Can organizations continue to leverage AI-driven tools for online assessments without compromising on the integrity of their hiring process? "

This article will discuss the common methods candidates use to outsmart online assessments. We will also dive deep into actionable steps that you can take to prevent cheating while delivering a positive candidate experience.

Common Cheating Tactics and How You Can Combat Them


  1. Using ChatGPT and other AI tools to write code

    Copy-pasting code using AI-based platforms and online code generators is one of common cheat codes in candidates' books. For tackling technical assessments, candidates conveniently use readily available tools like ChatGPT and GitHub. Using these tools, candidates can easily generate solutions to solve common programming challenges such as:
    • Debugging code
    • Optimizing existing code
    • Writing problem-specific code from scratch
    Ways to prevent it
    • Enable full-screen mode
    • Disable copy-and-paste functionality
    • Restrict tab switching outside of code editors
    • Use AI to detect code that has been copied and pasted
  2. Enlist external help to complete the assessment


    Candidates often seek out someone else to take the assessment on their behalf. In many cases, they also use screen sharing and remote collaboration tools for real-time assistance.

    In extreme cases, some candidates might have an off-camera individual present in the same environment for help.

    Ways to prevent it
    • Verify a candidate using video authentication
    • Restrict test access from specific IP addresses
    • Use online proctoring by taking snapshots of the candidate periodically
    • Use a 360 degree environment scan to ensure no unauthorized individual is present
  3. Using multiple devices at the same time


    Candidates attempting to cheat often rely on secondary devices such as a computer, tablet, notebook or a mobile phone hidden from the line of sight of their webcam.

    By using multiple devices, candidates can look up information, search for solutions or simply augment their answers.

    Ways to prevent it
    • Track mouse exit count to detect irregularities
    • Detect when a new device or peripheral is connected
    • Use network monitoring and scanning to detect any smart devices in proximity
    • Conduct a virtual whiteboard interview to monitor movements and gestures
  4. Using remote desktop software and virtual machines


    Tech-savvy candidates go to great lengths to cheat. Using virtual machines, candidates can search for answers using a secondary OS while their primary OS is being monitored.

    Remote desktop software is another cheating technique which lets candidates give access to a third-person, allowing them to control their device.

    With remote desktops, candidates can screen share the test window and use external help.

    Ways to prevent it
    • Restrict access to virtual machines
    • AI-based proctoring for identifying malicious keystrokes
    • Use smart browsers to block candidates from using VMs

Future-proof Your Online Assessments With HackerEarth

HackerEarth's AI-powered online proctoring solution is a tested and proven way to outsmart cheating and take preventive measures at the right stage. With HackerEarth's Smart Browser, recruiters can mitigate the threat of cheating and ensure their online assessments are accurate and trustworthy.
  • Secure, sealed-off testing environment
  • AI-enabled live test monitoring
  • Enterprise-grade, industry leading compliance
  • Built-in features to track, detect and flag cheating attempts
Boost your hiring efficiency and conduct reliable online assessments confidently with HackerEarth's revolutionary Smart Browser.

Talent Acquisition Strategies For Rehiring Former Employees

Discover effective talent acquisition strategies for rehiring former employees. Learn how to attract, evaluate, and retain top boomerang talent to strengthen your workforce.
Author
Nischal V Chadaga
Calendar Icon
June 25, 2025
Timer Icon
3 min read
Former employees who return to work with the same organisation are essential assets. In talent acquisition, such employees are also termed as ‘Boomerang employees’. Former employees are valuable because they require the least training and onboarding because of their familiarity with the organization’s policies. Rehiring former employees by offering them more perks is a mark of a successful hiring process. This article will elaborate on the talent acquisition strategies for rehiring former employees, supported by a few real-life examples and best practices.

Why Should Organizations Consider Rehiring?

One of the best ways of ensuring quality hire with a low candidate turnover is to deploy employee retention programs like rehiring female professionals who wish to return to work after a career break. This gives former employees a chance to prove their expertise while ensuring them the organization’s faith in their skills and abilities. Besides, seeing former employees return to their old organizations encourages newly appointed employees to be more productive and contribute to the overall success of the organization they are working for. A few other benefits of rehiring old employees are listed below.

Reduced Hiring Costs

Hiring new talent incurs a few additional costs. For example, tasks such as sourcing resumes of potential candidates, reaching out to them, conducting interviews and screenings costs money to the HR department. Hiring former employees cuts down these costs and aids a seamless transition process for them.

Faster Onboarding

Since boomerang employees are well acquainted with the company’s onboarding process, they don’t have to undergo the entire exercise. A quick, one-day session informing them of any recent changes in the company’s work policies is sufficient to onboard them.

Retention of Knowledge

As a former employee, rehired executives have knowledge of the previous workflows and insights from working on former projects. This can be valuable in optimizing a current project. They bring immense knowledge and experience with them which can be instrumental in driving new projects to success.Starbucks is a prime example of a company that has successfully leveraged boomerang employees. Howard Schultz, the company's CEO, left in 2000 but returned in 2008 during a critical time for the firm. His leadership was instrumental in revitalizing the brand amid financial challenges.

Best Practices for Rehiring Former Employees

Implementing best practices is the safest way to go about any operation. Hiring former employees can be a daunting task especially if it involves someone who was fired previously. It is important to draft certain policies around rehiring former employees. Here are a few of them that can help you to get started.

1. Create a Clear Rehire Policy

While considering rehiring a former employee, it is essential to go through data indicating the reason why they had to leave in the first place. Any offer being offered must supersede their previous offer while marking clear boundaries to maintain work ethics. Offer a fair compensation that justifies their skills and abilities which can be major contributors to the success of the organization. A well-defined policy not only streamlines the rehiring process but also promotes fairness within the organization.

2. Conduct Thorough Exit Interviews

Exit interviews provide valuable insights into why employees leave and can help maintain relationships for potential future rehires. Key aspects to cover include:
  • Reasons for departure.
  • Conditions under which they might consider returning.
  • Feedback on organizational practices.
Keeping lines of communication open during these discussions can foster goodwill and encourage former employees to consider returning when the time is right.

3. Maintain Connections with Alumni

Creating and maintaining an alumni association must be an integral part of HR strategies. This exercise ensures that the HR department can find former employees in times of dire need and indicates to former employees how the organization is vested in their lives even after they have left them. This gesture fosters a feeling of goodwill and gratitude among former hires. Alumni networks and social media groups help former employees stay in touch with each other, thus improving their interpersonal communication.Research indicates that about 15% of rehired employees return because they maintained connections with their former employers.

4. Assess Current Needs Before Reaching Out

Before reaching out to former employees, assess all viable options and list out the reasons why rehiring is inevitable. Consider:
  • Changes in job responsibilities since their departure.
  • Skills or experiences gained by other team members during their absence.
It is essential to understand how the presence of a boomerang employee can be instrumental in solving professional crises before contacting them. It is also important to consider their present circumstances.

5. Initiate an Honest Conversation

When you get in touch with a former employee, it is important to understand their perspective on the job being offered. Make them feel heard and empathize with any difficult situations they may have had to face during their time in the organization. Understand why they would consider rejoining the company. These steps indicate that you truly care about them and fosters a certain level of trust between them and the organization which can motivate them to rejoin with a positive attitude.

6. Implement a Reboarding Program

When a former employee rejoins, HR departments must ensure a robust reboarding exercise is conducted to update them about any changes within the organization regarding the work policies and culture changes, training them about any new tools or systems that were deployed during their absence and allowing them time to reconnect with old team members or acquaint with new ones.

7. Make Them Feel Welcome

Creating a welcoming environment is essential for helping returning employees adjust smoothly. Consider:
  • Organizing team lunches or social events during their first week.
  • Assigning a mentor or buddy from their previous team to help them reacclimate.
  • Providing resources that facilitate learning about any organizational changes.
A positive onboarding experience reinforces their decision to return and fosters loyalty.

Real-Life Examples of Successful Rehiring

Several companies have successfully implemented these strategies:

IBM: The tech giant has embraced boomerang hiring by actively reaching out to former employees who possess critical skills in emerging technologies. IBM has found that these individuals often bring fresh perspectives that contribute significantly to innovation7.

Zappos: Known for its strong company culture, Zappos maintains an alumni network that keeps former employees engaged with the brand. This connection has led to numerous successful rehiring instances, enhancing both morale and productivity within teams6.

Conclusion

Rehiring former employees can provide organizations with unique advantages, including reduced costs, quicker onboarding, and retained knowledge. By implementing strategic practices—such as creating clear policies, maintaining connections, assessing current needs, and fostering welcoming environments—companies can effectively tap into this valuable talent pool.

As organizations continue navigating an ever-changing workforce landscape, embracing boomerang employees may be key to building resilient teams equipped for future challenges. By recognizing the potential benefits and following best practices outlined above, businesses can create a robust strategy for rehiring that enhances both employee satisfaction and organizational performance.
Arrow Left
Arrow right
Tech Hiring Insights

HackerEarth Blogs

Gain insights to optimize your developer recruitment process.
Clear all
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Filter
Filter

8 Latest Artificial Intelligence Software (Apps) Challenging The Human Brain

Introduction

“In the past 2,000 years, the hardware in our brains has not improved… In the next 30 years, AI will overtake human intelligence,” says Softbank CEO Masayoshi Son.

If you’ve read Ray Kurzweil’s “The Singularity is Near: When Humans Transcend Biology,” you’d expect that AI is going to exhibit human-level intelligence in a decade or two. The startlingly thought-provoking work by the futurist gives you a fair picture of the road ahead, a time when humans, with the aid of advanced technologies, will “transcend their biological limitations.”

And you know what? This plausible scenario is at our doorstep. With superintelligence on the brink of becoming a reality, his words ring true, although they are downright scary. Computers and their growing abilities are likely to outpace our skills sooner than we think. $16 trillion will be added to the global economy by 2030, thanks to artificial intelligence.

Terms like artificial intelligence and machine learning have been bandied about for a while now. Despite the groundbreaking strides, in terms of intuition, vision, common sense, and language, there are miles to cover. Machines can’t still beat us at everything we do, but they’ve surely have outsmarted us in some ways.

This post talks about some amazing artificial intelligence software that are just so smart.

Latest Artificial Intelligence Software

1. Deep Mind’s AlphaGo

In 2016, AlphaGo was in the news for beating the 9-Dan top player Lee Sedol at Go. According to Wikipedia, the ancient Chinese game of Go is “an abstract strategy board game for two players, in which the aim is to surround more territory than the opponent.”

Watch this2 minute video:

The AI software from Google beat the South Korean grandmaster in a five-game match, winning 4­–1. Brute-force calculations will not work with this complex game. It needed much more.

AlphaGo used deep neural networks and advanced tree search to win. “AlphaGo learned to discover new strategies for itself, by playing millions of games between its neural networks, against themselves, and gradually improving,” said David Silver, Go team’s main programmer. Of the two artificial networks used, the policy network predicted the next move and the value network evaluated the winner of every position on the board.

The team used the Google Cloud Platform for the massive computing power it needed. With advanced machine learning techniques, such as reinforcement learning, and fantastic engineering skills, DeepMind did much better than expected. The cyborg had to figure out how to win, and not just know how to mimic human moves.

This highly publicized event marked the beginning of a new era. Considering the magic of Moves 37 and 78, it was more a case of a human and machine than human against machine. This outcome has immense possibilities. Like computer scientist Andy Salerno says, “AlphaGo isn’t a mysterious beast from some distant unknown planet. AlphaGo is us. AlphaGo is our incessant curiosity. AlphaGo is our drive to push ourselves beyond what we thought possible.” You can read more here.

2. DeepStack

Quite like Go, Poker fell to the magic of AI as well. In a hands-on no-limit Texas hold’em game, DeepStack beat pro poker players. The algorithm had a staggering 450 milli big blinds per game when a professional player typically has a win rate of 50 milli big blinds per game. This is quite an achievement considering this version of poker has 10160 paths that are possible for each hand!

DeepStack is based more on “intuition” than on working out the moves ahead of time. The algorithm makes real-time decisions by computing fewer possibilities in a matter of seconds.

In their paper, a team of researchers from the Czech Technical University and Charles University in the Czech Republic and the University of Alberta in Canada, talks about the winning AI algorithm DeepStack, which “combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning.” A team from Carnegie Mellon has also developed another winning AI software called Libratus. However, game theory won’t hold for multi-player games.

This approach has important implications in other fields that have imperfect information such as medicine, finance, cybersecurity, and defense.

Machine learning challenge, ML challenge

3. AI Duet

An artificial “pianist” from Google’s Creative Lab, AI Duet was built in collaboration with Yotam Mann, developer/musician. Watch this short video and see it working:

In this video, he tells you how this AI software works using the concept of neural networks. This interactive experiment is part of Magenta, an open-source project from Google’s Google Brain unit. You can access the code here.AI Duet is built with Tone.js, TensorFlow, and other Magenta tools.

Who needs a partner when this virtual piano player will accompany you in a lilting duet!

Even if you are no Chopin, this intelligent software will respond to you and create a rhythm. It could even inspire you. It is not going to get you ready for a concert in Boston Symphony Hall, you could have some real fun hitting random notes and waiting for the computer to come back with something improvisational based on melodies it has been trained on.

4. COIN

It looks like artificial intelligence is revolutionizing investment banking. JPMorgan’s software COIN, which is an acronym for contract intelligence, has worked magic by “interpreting commercial loan agreements” in seconds, a task that previously cost 360,000 man hours.

COIN is based on machine learning concepts. The software is naturally less error-prone while checking loan-servicing agreements. A Bloomberg report said that JPMorgan is keen on “deploying the technology which learns by ingesting data to identify patterns and relationships. The bank plans to use it for other types of complex legal filings like credit-default swaps and custody agreements. Someday, the firm may use it to help interpret regulations and analyze corporate communications.”

The company believes that it is only the start of smart automation of processes in the financial industry. JP Morgan is committed to new initiatives. “We’re willing to invest to stay ahead of the curve, even if in the final analysis some of that money will go to product or a service that wasn’t needed,” said Marianne Lake, the finance chief.

5. LipNet

Lip reading has become so easy with University of Oxford’s Department of Computer Science’s AI software, LipNet. The team of researchers have detailed it in the paper titled Lipnet: End-to-end sentence-level lipreading.

The paper says, LipNet “maps a variable-length sequence of video frames to text, making use of spatiotemporal convolutions, a recurrent network, and the connectionist temporal classification loss, trained entirely end-to-end.”

Watch this short interesting video:

When you compare this neural network-based software to human lip readers where the accuracy is 12.3%, it has an accuracy of 46.8% while annotating video footage. “All existing [lip-reading approaches] perform only word classification, not sentence-level sequence prediction…. To the best of our knowledge, LipNet is the first lip-reading model to operate at sentence-level,” say the researchers. AI will soon be able to transcribe footage that has a low frame rate and poor image quality sooner than we think.

Apart from the immense help it will be to people who suffer from disabling hearing loss, the team is also interested in its practical possibilities such as “silent dictation in public spaces, covert conversations, speech recognition in noisy environments, biometric identification, and silent-movie processing.”

6. Philip

For those who fear the dark side of AI, this new “killer” program is just another factor reinforcing their misgivings. MIT’s Computer Science and Artificial Intelligence Laboratory has come up with “Philip,” who is out for blood in the popular Super Smash Bros Melee multiplayer video game.

It is based on neural networks and is an “in-game computer player that learned everything from scratch.” The team led by Vlad Firou fed the vicious AI coordinates of the gameplay objects. In their deep reinforcement learning technique, the computer played itself repeatedly in Nintendo’s popular console game.

The team used algorithms such as Actor-Critic and Q Learning to beat 10 top-ranked human players. Philip bested the players with a reaction time of 33 milliseconds and being 6 times faster than humans.

You can read the research paper here.

7. DeepCoder

Cambridge University and Microsoft have come up with deep learning-based software, called DeepCoder, that can write code on its own. “The approach is to train a neural network to predict properties of the program that generated the outputs from the inputs. We use the neural network’s predictions to augment search techniques from the programming languages community, including enumerative search and an SMT-based solver,” says the team in its research paper.

They used a domain-specific language to teach the system to solve online programming challenges involving 3 to 6 lines of code. The system practices and figures out what code combinations work best. Using program synthesis, DeepCoder puts together pieces of code from software that already exists just like a programmer would.

One of the researchers Marc Brockschmidt says, “We’re targeting the people who can’t or don’t want to code, but can specify what their problem is.”

8. GoogLeNet

A deep learning AI system from Google can detect cancer with better accuracy and speed than pathologists. Identifying tumors scanning images can be error-prone and laborious.

Here’s a video tutorial on learning about googlenet in detail:

Google says, “After additional customization, including training networks to examine the image at different magnifications (much like what a pathologist does), we showed that it was possible to train a model that either matched or exceeded the performance of a pathologist who had unlimited time to examine the slides.”

“We present a framework to automatically detect and localise tumours as small as 100 × 100 pixels in gigapixel microscopy images sized 100,000×100,000 pixels. Our method leverages a convolutional neural network (CNN) architecture and obtains state-of-the-art results on the Camelyon16 dataset in the challenging lesion-level tumour detection task,” writes Google’s team in its white paper.

Google will continue its research, working on larger datasets, to improve patient outcomes.

Summary

New possibilities and advances in artificial intelligence are pushing the boundaries of the human brain like never before. The brilliant artificial intelligence programs outlined in this post is only a glimpse into a terrifying future. If these trends continue, scientists believe that machines could surpass human capabilities sooner than later. But there really is no reason for mass hysteria as of now argues the other camp. Only time will tell, right?

HackerEarth partners with MLH

We believe hackathons are changing the world. Hackathons are all about innovation. Hackathons provide an excellent way for hackers to learn, innovate, and create something unique.

MLH is a community-driven organization which aims to empower hackers. MLH has powered over 200 weekend-long innovation competitions for a community of 65,000+ students. MLH and HackerEarth share a common passion—helping hackers across the globe to learn and innovate.

Today, we are thrilled to announce HackerEarth Sprint’s new integration with MLH, which will make it very simple for organizers to host MLH hackathons on HackerEarth Sprint.

Sachin Gupta, CEO and Co-founder of HackerEarth, said, "We strongly believe in MLH's mission and are excited to be working together to provide a great experience to both organizers and participants."

With a single setting in Sprint, the following are taken care of:

  • Login with MyMLH: Login with MyMLH allows users to login/signup through MyMLH. This will automatically fetch the participant details and display them on the dashboard.
  • MLH Special Prizes: All the special prizes from MLH are automatically added to your hackathon’s special prizes.
  • MLH Badge: The MLH badge will be placed on your hackathon cover image.
  • MLH Hardware devices: The participants are informed about the hardware devices made available to them by MLH, and they can easily tag their submissions with the devices they have used.

We will continue working with MLH to improve the experience for both hackathon organizers and participants.

Jon Gottfried, Co-Founder of MLH, said, "We are very excited to work with HackerEarth to standardize the MLH experience for hackers and organizers across the platforms that they use to run their Member Events."

To learn more about Major League Hacking, check out https://mlh.io/

About Major League Hacking

Major League Hacking (MLH) is the official student hackathon league. Each year, MLH powers over 200 weekend-long invention competitions that inspire innovation, cultivate communities and teach computer science skills to more than 65,000 students around the world. MLH is an engaged and passionate maker community, consisting of the next generation of technology leaders and entrepreneurs.

Winning Tips on Machine Learning Competitions by Kazanova, Current Kaggle #3

Introduction

Machine Learning is tricky. No matter how many books you read, tutorials you finish or problems you solve, there will always be a data set you might come across where you get clueless. Specially, when you are in your early days of Machine Learning. Isn’t it ?

In this blog post, you’ll learn some essential tips on building machine learning models which most people learn with experience.These tips were shared by Marios Michailidis(a.k.a Kazanova), Kaggle Grandmaster, Current Rank #3 in a webinar happened on 5th March 2016. The webinar had three aspects:

  1. VideoWatch Here.
  2. Slides – Slides used in the video were shared by Marios. Indeed, an enriching compilation of machine learning knowledge. Below are the slides.
  3. Q & As – This blog enlists all the questions asked by participants at webinar.

The key to succeeding in competitions is perseverance. Marios said, ‘I won my first competition (Acquired valued shoppers challenge) and entered kaggle’s top 20 after a year of continued participation on 4 GB RAM laptop (i3)’.Were you planning to give up ?

While reading Q & As, if you have any questions, please feel free to drop them in comments!

Questions & Answers

1. What are the steps you follow for solving a ML problem? Please describe from scratch.

Following are the steps I undertake while solving any ML problem:

  1. Understand the data – After you download the data, start exploring features. Look at data types. Check variable classes. Create some univariate – bivariate plots to understand the nature of variables.
  2. Understand the metric to optimize – Every problem comes with a unique evaluation metric. It’s imperative for you to understand it, specially how does it change with target variable.
  3. Decide cross validation strategy – To avoid overfitting, make sure you’ve set up a cross validation strategy in early stages. A nice CV strategy willhelp you get reliable score on leaderboard.
  4. Start hyper parameter tuning– Once CV is at place, try improving model’s accuracy using hyper parameter tuning. It further includes the following steps:
    • Data transformations: It involve steps like scaling, removing outliers, treating null values, transform categorical variables, do feature selections, create interactions etc.
    • Choosing algorithms and tuning their hyper parameters: Try multiple algorithms to understand how model performance changes.
    • Saving results: From all the models trained above, make sure you save their predictions. They will be useful for ensembling.
    • Combining models: At last, ensemble the models, possibly on multiple levels. Make sure the models are correlated for best results.

Machine learning challenge, ML challenge

2. What are the model selection and data manipulation techniques you follow to solve a problem?

Generally, I try (almost) everything for most problems. In principle for:

  • Time series: I use GARCH, ARCH, regression, ARIMA models etc.
  • Image classification: I use deep learning (convolutional nets) in python.
  • Sound Classification :Common neural networks
  • High cardinality categorical (like text data): I use linear models, FTRL, Vowpal wabbit, LibFFM, libFM, SVD etc.

For everything else,I use Gradient boosting machines (like XGBoost and LightGBM) and deep learning (like keras, Lasagne, caffe, Cxxnet). I decide what model to keep/drop in Meta modelling with feature selection techniques.Some of the feature selection techniques I use includes:

  • Forward (cv or not) – Start from null model. Add one feature at a time and check CV accuracy. If it improves keep the variable, else discard.
  • Backward (cv or not) – Start from full model and remove variables one by one. It CV accuracy improves by removing any variable, discard it.
  • Mixed (or stepwise) – Use a mix of above to techniques.
  • Permutations
  • Using feature importance – Use random forest, gbm, xgboost feature selection feature.
  • Apply some stats’ logic such as chi-square test, anova.

Data manipulation could be different for every problem :

  • Time series : You can calculate moving averages, derivatives. Remove outliers.
  • Text : Useful techniques are tfidf, countvectorizers, word2vec, svd (dimensionality reduction). Stemming, spell checking, sparse matrices, likelihood encoding, one hot encoding (or dummies), hashing.
  • Image classification: Here you can do scaling, resizing, removing noise (smoothening), annotating etc
  • Sounds : Calculate Furrier Transforms , MFCC (Mel frequency cepstral coefficients), Low pass filters etc
  • Everything else : Univariate feature transformations (like log +1 for numerical data), feature selections, treating null values, removing outliers, converting categorical variables to numeric.

3. Can you elaborate cross validation strategy?

Cross validation means that from my main set, I create RANDOMLY 2 sets. I built (train) my algorithm with the first one (let’s call it training set) and score the other (let’s call it validation set). I repeat this process multiple times and always check how my model performs on the test set in respect to the metric I want to optimize.

The process may look like:

  • For 10 (you choose how many X) times
  • Split the set in training (50%-90% of the original data)
  • And validation (50%-10% of the original data)
  • Then fit the algorithm on the training set
  • Score the validation set.
  • Save the result of that scoring in respect to the chosen metric.
  • Calculate the average of these 10 (X) times. That how much you expect this score in real life and is generally a good estimate.
  • Remember to use a SEED to be able to replicate these X splits

Other things to consider is Kfold and stratified KFold . Read here.For time sensitive data, make certain you always the rule of having past predicting future when testing’s.

4. Can you please explain sometechniques usedfor cross validation?

  • Kfold
  • Stratified Kfold
  • Random X% split
  • Time based split
  • For large data, just one validation set could suffice (like 20% of the data – you don’t need to do multiple times).

5. How did you improve your skills in machine learning? What training strategy did you use?

I did a mix of stuff in 2. Plus a lot of self-research. Alongside,programming and software (in java) and A LOT of Kaggling ☺

6. Which are the most useful python libraries for a data scientist ?

Below are some libraries which I find most useful in solving problems:

  • Data Manipulation
    • Numpy
    • Scipy
    • Pandas
  • Data Visualization
    • Matplotlib
  • Machine Learning / Deep Learning
    • Xgboost
    • Keras
    • Nolearn
    • Gensim
    • Scikit image
  • Natural Language Processing
    • NLTK

7. What are useful ML techniques / strategies to impute missing values or predict categorical label when all the variables are categorical in nature.

Imputing missing values is a critical step. Sometimes you may find a trend in missing values. Below are some techniques I use:

  • Use mean, mode, median for imputation
  • Use a value outside the range of the normal values for a variable. like -1 ,or -9999 etc.
  • Replace witha likelihood – e.g. something that relates to the target variable.
  • Replace with something which makes sense. For example: sometimes null may mean zero
    • Try to predict missing values based on subsets of know values
    • You may consider removing rows with many null values

8. Can you elaborate what kind of hardware investment you have done i.e. your own PC/GPU setup for Deep learning related tasks? Or were you using more cloud based GPU services?

I won my first competition (Acquired valued shoppers challenge) and entered kaggle’s top 20 after a year of continued participation on 4 GB RAM laptop (i3). I was using mostly self-made solutions up to this point (in Java). That competition it had something like 300,000,000 rows of data of transactions you had to aggregate so I had to parse the data and be smart to keep memory usage at a minimum.

However since then I made some good investments to become Rank #1. Now, I have access to linux servers of 32 cores and 256 GBM of RAM. I also have a geforce 670 machine (for deep learning /gpu tasks) . Also, I use mostly Python now. You can consider Amazon’s AWS too, however this is mostly if you are really interested in getting to the top, because the cost may be high if you use it a lot.

9. Do you use high performing machine like GPU. or for example do you do thing like grid search for parameters for random forest(say), which takes lot of time, so which machine do you use?

I use GPUs (not very fast, like a geforce 670) for every deep learning training model. I have to state that for deep learning GPU is a MUST. Training neural nets on CPUs takes ages, while a mediocre GPU can make a simple nn (e.g deep learning) 50-70 times faster. I don’t like grid search. I do this fairly manually. I think in the beginning it might be slow, but after a while you can get to decent solutions with the first set of parameters! That is because you can sort of learn which parameters are best for each problem and you get to know the algorithms better this way.

10. How do people built around 80+ models is it by changing the hyper parameter tuning ?

It takes time. Some people do it differently. I have some sets of params that worked in the past and I initialize with these values and then I start adjusting them based on the problem at hand. Obviously you need to forcefully explore more areas (of hyper params in order to know how they work) and enrich this bank of past successful hyper parameter combinations for each model. You should consider what others are doing too. There is NO only 1 optimal set of hyper params. It is possible you get a similar score with a completely different set of params than the one you have.

11. How does one improve their kaggle rank? Sometimes I feel hopeless while working on any competition.

It’s not an overnight process. Improvement on kaggle or anywhere happens with time. There are no shortcuts. You need to just keep doing things. Below are some of the my recommendations:

  • Learn better programming: Learn python if you know R.
  • Keep learning tools (listed below)
  • Read some books.
  • Play in ‘knowledge’ competitions
  • See what the others are doing in kernels or in past competitions look for the ‘winning solution sections’
  • Team up with more experience users, but you need to improve your ranking slightly before this happens
  • Create a code bank
  • Play … a lot!

12. Can you tellus about some usefultools used in machine learning ?

Below is the list of my favourite tools:

13. How to start with machine learning?

I like these slides from the university of utah in terms of understanding some basic algorithms and concepts about machine learning. This book for python. I like this book too. Don’t forget to follow the wonderful scikit learn documentation. Use jupyter notebook from anaconda.

You can find many good links that have helped me in kaggle here. Look at ‘How Did you Get Better at Kaggle’

In addition, you should do Andrew Ng’s machine learning course. Alongside, you can follow some good blogs such as mlwave, fastml, analyticsvidhya. But the best way is to get your hands dirty. do some kaggle! tackle competitions that have the “knowledge” flag first and then start tackling some of the main ones. Try to tackle some older ones too.

14. What techniques perform best on large data sets on Kaggle and in general ? How to tackle memory issues ?

Big data sets with high cardinality can be tackled well with linearmodels. Consider sparse models. Tools like vowpal wabbit. FTRL , libfm, libffm, liblinear are good tools matrices in python (things like csr matrices). Consider ensembling (like combining) models trained on smaller parts of the data.

15. What is the SDLC (Sofware Development Life Cycle) of projects involving Machine Learning ?

  • Give a walk-through on an industrial project and steps involved, so that we can get an idea how they are used. Basically, I am in learning phase and would expect to get an industry level exposure.
  • Business questions: How to recommend products online to increase purchases.
  • Translate this into an ml problem. Try to predict what the customer will buy in the future given some data available at the time the customer is likely to make the click/purchase, given some historical exposures to recommendations
  • Establish a test /validation framework.
  • Find best solutions to predict best what customer chose.
  • Consider time/cost efficiency as well as performance
  • Export model parameters/pipeline settings
  • Apply these in an online environment. Expose some customers but NOT all. Keep test and control groups
  • Assess how well the algorithm is doing and make adjustments over time.

16. Which is your favorite machine learning algorithm?

It has to be Gradient Boosted Trees. All may be good though in different tasks.

15. Which language is best for deep learning, R or Python?

I prefer Python. I think it is more program-ish . R is good too.

16. What would someone trying to switch careers in data science need to gain aside from technical skills? As I don’t have a developer background would personal projects be the best way to showcase my knowledge?

The ability to translate business problems to machine learning, and transforming them into solvable problems.

17. Do you agree with the statement that in general feature engineering (so exploring and recombining predictors) is more efficient than improving predictive models to increase accuracy?

In principle – Yes. I think model diversity is better than having a few really strong models. But it depends on the problem.

18. Are the skills required to get to the leaderboard top on Kaggle also those you need for your day-to day job as a data scientist? Or do they intersect or are somewhat different? Can I make the idea of what a data scientist’s job is based on Kaggle competitions? And if a person does well on Kaggle does it follow that she will be a successful data scientist in her career ?

There is some percentage of overlap especially when it comes to making predictive models, working with data through python/R and creating reports and visualizations. What Kaggle does not offer (but you can get some idea) is:

  • How to translate a business question to a modelling (possibly supervised) problem
  • How to monitor models past their deployment
  • How to explain (many times) difficult concepts to stake holders.
  • I think there is always room for a good kaggler in the industry world. It is just that data science can have many possible routes. It may be for example that not everyone tends to be entrepreneurial in their work or gets to be very client facing, but rather solving very particular (technical) tasks.

19. Which machine learning concepts are must to have to perform well in a kaggle competition?

  • Data interrogation/exploration
  • Data transformation – pre-processing
  • Hands on knowledge of tools
  • Familiarity with metrics and optimization
  • Cross Validation
  • Model Tuning
  • Ensembling

20. How do you see the future of data scientist job? Is automation going to kill this job?

No – I don’t think so. This is what they used to say about automation through computing. But ended up requiring a lot of developers to get the job done! It may be possible that data scientists focus on softer tasks over time like translating business questions to ml problems and generally becoming shepherds’ of the process – as in managers/supervisors of the modelling process.

21. How to use ensemble modelling in R and Python to increase the accuracy of prediction. Please quote some real life examples?

You can see my github script as I explain different Machine leaning methods based on a Kaggle competition. Also, check this ensembling guide.

22. What is best python deep learning libraries or framework for text analysis?

I like Keras (because now supports sparse data), Gensim (for word 2 vec).

23. How valuable is the knowledge gained through these competitions in real life? Most often I see competitions won by ensembling many #s of models … is this the case in real life production systems? Or are interpretable models more valuable than these monster ensembles in real productions systems?

In some cases yes – being interpretable or fast (or memory efficient) is more important. Butthis is likely to change over time as people will be less afraid of black box solutions and focus on accuracy.

24. Should I worry about learning about the internals about the machine learning algorithms or just go ahead and try to form an understanding of the algorithms and use them (in competitions and to solve real life business problems) ?

You don’t need the internals. I don’t know all the internals. It is good if you do, but you don’t need to. Also there are new stuff coming out every day – sometimes is tough to keep track of it. That is why you should focus on the decent usage of any algorithm rather than over investing in one.

25. Which are the best machine learning techniques for imbalanced data?

I don’t do a special treatment here. I know people find that strange. This comes down to optimizing the right metric (for me). It is tough to explain in a few lines. There are many techniques for sampling, but I never had to use. Some people are using Smote. I don’t see value in trying to change the principal distribution of your target variable. You just end up with augmented or altered principal odds. If you really want a cut-off to decide on whether you should act or not – you may set it based on the principal odds.

I may not be the best person to answer this. I personally have never found it (significantly) useful to change the distribution of the target variable or the perception of the odds in the target variable. It may just be that other algorithms are better than others when dealing with this task (for example tree-based ones should be able to handle this).

26. Typically, marketing research problems have been mostly handled using standard regression techniques – linear and logistic regression, clustering, factor analyses, etc…My question is how useful are machine learning and deep learning techniques/algorithms useful to marketing research or business problems? For example how useful is say interpreting the output of a neural network to clients? Are there any resources you can refer to?

They are useful in the sense that you can most probably improve accuracy (in predicting let’s say marketing response) versus linear models (like regressions). Interpreting the output is hard and in my opinion it should not be necessary as we are generally moving towards more black box and complicated solutions.

As a data scientist you should put effort in making certain that you have a way to test how good your results are on some unobserved (test) data rather trying to understand why you get the type of predictions you are getting. I do think that decompressing information from complicating models is a nice topic (and valid for research), but I don’t see it as necessary.

On the other hand, companies, people, data scientists, statisticians and generally anybody who could be classified as a ‘data science player’ needs to get educated to accept black box solutions as perfectly normal. This may take a while, so it may be good to run some regressions along with any other modelling you are doing and generally try to provide explanatory graphs and summarized information to make a case for why your models perform as such.

27. How to build teams for collaboration on Kaggle ?

You can ask in forums (i.e in kaggle) . This may take a few competitions though before ’people can trust you’. Reason being, they are afraid of duplicate accounts (which violate competition rules), so people would prefer somebody who is proven to play fair. Assuming some time has passed, you just need to think of people you would like play with, people you think you can learn from and generally people who are likely to take different approaches than you so you can leverage the benefits of diversity when combining methods.

28. I have gone through basic machine learning course(theoretical) . Now I am starting up my practical journey , you just recommended to go through sci-kit learn docs & now people are saying TENSORFLOW is the next scikit learn , so should I go through scikit or TF is a good choice ?

I don’t agree with this statement ‘people are saying TENSORFLOW is the next scikit learn’. Tensorflow is a framework to do well certain machine learning tasks (like for deep learning). I think you can learn both, but I would start with scikit. I personally don’t know TensorFlow , but I use tools that are based on tensor flow (for example Keras). I am lazy I guess!

29. The main challenge that I face in any competition is cleaning the data and making it usable for prediction models. How do you overcome it ?

Yeah. I join the club! After a while you will create pipelines that could handle this relatively quicker. However…you always need to spend time here.

30. How to compute big data without having powerful machine?

You should consider tools like vowpal wabbit and online solutions, where you parse everything line by line. You need to invest more in programming though.

31. What is Feature Engineering?

In short, feature engineering can be understood as:

  • Feature transformation (e.g. converting numerical or categorical variables to other types)
  • Feature selections
  • Exploiting feature interactions (like should I combine variable A with variable B?)
  • Treating null values
  • Treating outliers

32. Which maths skills are important in machine learning?

Some basic probabilities along with linear algebra (e.g. vectors). Then some stats help too. Like averages, frequency, standard deviation etc.

33. Can you share your previous solutions?

See some with code and some without (just general approach).

34. How long should it take for you to build your first machine learning predictor ?

Depends on the problem (size, complexity, number of features). You should not worry about the time. Generally in the beginning you might spend much time on things that could be considered much easier later on. You should not worry about the time as it may be different for each person, given the programming, background or other experience.

35. Are there any knowledge competitions that you can recommend where you are not necessarily competing on the level as Kaggle but building your skills?

From here, both titanic and digit recognizer are good competitions to start. Titanic is better because it assumes a flat file. Digit recognizer is for image classification so it might be more advanced.

36. What is your opinion about using Weka and/or R vs Python for learning machine learning?

I like Weka. It has a good documentation– especially if you want to learn the algorithms. However I have to admit that it is not as efficient as some of the R and Python implementations. It has good coverage though. Weka has some good visualizations too – especially for some tree-based algorithms. I would probably suggest you to focus on R and Python at first unless your background is strictly in Java.

Summary

In short, succeeding in machine learning competition is all about learning new things, spending a lot of time training, feature engineering and validating models. Alongside, interact with community on forums, read blogs and learn from approach of fellow competitors.

Success is imminent, given that if you keep trying. Cheers!

How do giant sites like Facebook and Google check Username or Domain availability so fast?

Every time you try to create a new account on any of the websites, you begin with your name and, more often than not, you get the response “Username is already taken.”

Then, you add “your name + date of birth”, to realize it also has been “already taken” to finally end up with “your name + date of birth + license plate + graduation” to create the account.

I’m sure a lot of you are nodding and saying “been there, done that.”

Username, Usename taken, Username unavailable, how companies find username,

But how many of you have wondered how these giant sites like Facebook, Instagram, and Gmail verify whether the username is taken or not?

Let’s start with the two possible approaches

A linear search may not be a good idea

Let’s assume that Facebook stores all the data in its directory.

And the software simply checks each name on the list one at a time and if it doesn’t find a match, it tells you your desired username is available.

Doesn’t sound sensible, does it?

The software has to look at each name every time a username needs to be verified.

The technique is unreasonable when you compare it with the Facebook database, which has over 1.5 billion users, and Twitter, which has 300 million users.

What if they use a Binary search?

This makes more sense, with all the brains working at Facebook.

Facebook keeps all the data sorted and arranged in an alphabetized list.

The list is 1.5 billion characters long, stored like a, aa,aaa……xyy, XYZ, yaa,yaa,yxz, zaa, zac and is very similar to your dictionary.

When you enter a name, it matches the entry with the username exactly in the middle of the list. If it matches, the software rejects the new username.

If it doesn’t match (which has a lot of possibilities), the next question the software addresses are “ If searched alphabetically, does the requested username come before or after this username in the middle?”

If it comes before, then the software knows that all the 750 million people after the username found in the middle of the list is of no use for the current search.

That eliminates 750 million possibilities in a single comparison.

If the desired username comes after the name in the middle (alphabetically), it eliminates all the names before it.

Either way, the software eliminates almost 750 million names for search in the first comparison.

Next, it takes the selected half of the list and immediately matches the requested username with the name in the middle of the remaining list.

If it matches, the requested name is rejected and if it doesn’t, the requested name is again checked for the possibility of it occurring before or after the name in the middle.

If it is before, reject the 350 million names after the name.

And go ahead with divide and conquer for the rest of the names as done earlier.

If the requested name is after the middle string, reject the names before it and try with the 350 million remaining names.

By dividing the list every time, you can compare the required username with the names in the list quite quickly…

But the question is…how quickly?

You will continue dividing the list into two until you can no longer do so.

And when you are left with one name in the database, you match it with your desired username.

This would be the last step before you find whether the username “chosen” is available or not.

For data as big as 1.5 billion, this method would need no more than 30 steps. 2 to the power of 31 gives you 2.14 billion, which is closest to our expectation of 1.5 billion users on Facebook.

This means fewer steps and complications for the same data when searched with a linear search.

What if the developers are very smart and use a Bloom filter as the solution?

Before you understand Bloom filters, you need to understand the concept of Hashing.

Hashing is like the license plate of your car.

A hash function takes data of any length as input and gives you a smaller identifier of a smaller, fixed length, which is often used to identify or compare data.

Bloom filters work simply – Test and Add.

Test whether the element is present in the list:

  • If it returns false, the element is definitely not on the list.
  • If it returns true, the element might probably be on the list. This false positive (will discuss it below) is a function of the Bloom filter and depends on the size and is independent of the hash function used.

A Bloom filter divides the memory area into buckets, which are filled with various hashes generated from one or many hash functions.

Let’s understand with an example.

Suppose, you have a memory bucket of size 10 and 3 hash functions which will give you three unique identifiers.

Suppose, you enter Ronaldo into this memory bucket.

Ronaldo, when passed through these hash functions, gives the value of 1,4, and 5. The filter quickly fills the memory in the bucket with these identifiers.

1 4 5

Now, you enter Messi into the memory bucket. Messi, when passed through the hash function, gives its own unique identifier. In this case, it is 3,7, and 8 and the filter fills the bucket.

1 3 4 5 7 8

As the functions always return the same value for similar inputs, we can be sure that when the name Ronaldo is given to the filter, it would check in locations 1,4, and 5 to find it full, which means that the name Ronaldo is already on the list.

Let’s continue with another example of entering Rooney into the memory.

Rooney, when passed through the hash function, returns 2,6, and 8. The filters check the memory to find that though 8 is full 2 and 6 are empty, which means you don’t have Rooney in the memory.

Therefore, the name is available.

But when the name Neymar is passed through the hash functions, it returns the value of 1,3 and 7 which eventually makes the filter believe that the name Neymar is already present on the list.

This scenario explains the concept of false positives used in Bloom filters. One can control the false positive by controlling the size of the Bloom filter.

More space is inversely proportional to false positives.

Each of the above-mentioned techniques comes with its own advantages and disadvantages.

With technology and computers getting smarter and faster every day, even the brute-force method seems feasible.

But with space and time complexity, many companies, such as Reddit, prefer Binary search, whereas some others, such as Medium, use Bloom filters smartly to suggest articles for you without repeating them again on your timeline.

Register now before your username is taken on the HackerEarth platform.

3 Types of Gradient Descent Algorithms for Small & Large Data Sets

  • Variation in gradient descent with learning rate-
  • Summary

    In this article, we learned about the basics of gradient descent algorithm and its types. These optimization algorithms are being widely used in neural networks these days. Hence, it's important to learn. The image below shows a quick comparison in all 3 types of gradient descent algorithms:Gradient_Descent_Types

    Simple Guide to Neural Networks and Deep Learning in Python

    Step 2: Import required libraries.

    from numpy import*

    import numpy as numpy

    import keras

    from keras.layers import Dense

    from keras.models import Sequential

    from keras.utils import np_utils

    from sklearn.preprocessing import LabelEncoder

    Step 3: Load data from the training set.

    X= numpy.genfromtxt("Iris_Data.txt",delimiter= ",", usecols=(0,1,2,3))

    t= numpy.genfromtxt("Iris_Data.txt",delimiter= ",", usecols= (4), dtype= None)

    Here, X is an array of input feature vectors and t is an array containing their corresponding target values. dtype= None changes the default data type of numpy array (i.e float) to contents of each column, individually.

    Step 4: Since target values t are in string format, it has to be assigned numerical labels an

    In the Spotlight

    Technical Screening Guide: All You Need To Know

    Read this guide and learn how you can establish a less frustrating developer hiring workflow for both hiring teams and candidates.
    Read More
    Mobile Left Background Image

    Can we stay in touch?

    We’d love to give you a free walkthrough of HackerEarth, so consider scheduling a free demo.
    Get a free demoMobile Right Background Image
    Authors

    Meet our Authors

    Get to know the experts behind our content. From industry leaders to tech enthusiasts, our authors share valuable insights, trends, and expertise to keep you informed and inspired.
    Ruehie Jaiya Karri
    Kumari Trishya

    AI In Recruitment: The Good, The Bad, The Ugly

    Artificial Intelligence (AI) has permeated virtually every industry, transforming operations and interactions. The tech recruitment sector is no exception, and AI’s influence shapes the hiring processes in revolutionary ways. From leveraging AI-powered chatbots for preliminary candidate screenings to deploying machine learning algorithms for efficient resume parsing, AI leaves an indelible mark on tech hiring practices.

    Yet, amidst these promising advancements, we must acknowledge the other side of the coin: AI’s potential malpractices, including the likelihood of cheating on assessments, issues around data privacy, and the risk of bias against minority groups.

    The dark side of AI in tech recruitment

    Negative impact of AI

    The introduction of AI in recruitment, while presenting significant opportunities, also brings with it certain drawbacks and vulnerabilities. Sophisticated technologies could enable candidates to cheat on assessments, misrepresent abilities and potential hiring mistakes. This could lead to hiring candidates with falsifying skills or qualifications, which can cause a series of negative effects like:

    • Reduced work quality: The work output might be sub-par if a candidate doesn’t genuinely possess the abilities they claimed to have.
    • Team disruptions: Other team members may have to pick up the slack, leading to resentment and decreased morale.
    • Rehiring costs: You might have to let go of such hires, resulting in additional costs for replacement.

    Data privacy is another critical concern

    Your company could be left exposed to significant risks if your AI recruiting software is not robust enough to protect sensitive employee information. The implications for an organization with insufficient data security could be severe such as:

    • Reputational damage: Breaches of sensitive employee data can damage your company’s reputation, making it harder to attract clients and talented employees in the future.
    • Legal consequences: Depending on the jurisdiction, you could face legal penalties, including hefty fines, for failing to protect sensitive data adequately.
    • Loss of trust: A data breach could undermine employee trust in your organization, leading to decreased morale and productivity.
    • Financial costs: Besides potential legal penalties, companies could also face direct financial losses from a data breach, including the costs of investigation, recovery, and measures to prevent future breaches.
    • Operational disruption: Depending on the extent of the breach, normal business operations could be disrupted, causing additional financial losses and damage to the organization’s reputation.

    Let’s talk about the potential for bias in AI recruiting software

    Perhaps the most critical issue of all is the potential for unconscious bias. The potential for bias in AI recruiting software stems from the fact that these systems learn from the data they are trained on. If the training data contains biases – for example, if it reflects a history of preferentially hiring individuals of a certain age, gender, or ethnicity – the AI system can learn and replicate these biases.

    Even with unbiased data, if the AI’s algorithms are not designed to account for bias, they can inadvertently create it. For instance, a hiring algorithm that prioritizes candidates with more years of experience may inadvertently discriminate against younger candidates or those who have taken career breaks, such as for child-rearing or health reasons.

    This replication and possible amplification of human prejudices can result in discriminatory hiring practices. If your organization’s AI-enabled hiring system is found to be biased, you could face legal action, fines, and penalties. Diversity is proven to enhance creativity, problem-solving, and decision-making. In contrast, bias in hiring can lead to a homogenous workforce, so its absence would likely result in a less innovative and less competitive organization.

    Also read: What We Learnt From Target’s Diversity And Inclusion Strategy

    When used correctly, AI in recruitment can take your hiring to the next level

    How to use AI during hiring freeze

    How do you evaluate the appropriateness of using AI in hiring for your organization? Here are some strategies for navigating the AI revolution in HR. These steps include building support for AI adoption, identifying HR functions that can be integrated with AI, avoiding potential pitfalls of AI use in HR, collaborating with IT leaders, and so on.

    Despite certain challenges, AI can significantly enhance tech recruitment processes when used effectively. AI-based recruitment tools can automate many manual recruiting tasks, such as resume screening and interview scheduling, freeing up time for recruiters to focus on more complex tasks. Furthermore, AI can improve the candidate’s experience by providing quick responses and personalized communications. The outcome is a more efficient, candidate-friendly process, which could lead to higher-quality hires.

    Let’s look at several transformational possibilities chatbots can bring to human capital management for candidates and hiring teams. This includes automation and simplifying various tasks across domains such as recruiting, onboarding, core HR, absence management, benefits, performance management, and employee self-service resulting in the following:

    For recruiters:

    • Improved efficiency and productivity: Chatbots can handle routine tasks like responding to common inquiries or arranging interviews. Thereby, providing you with more time to concentrate on tasks of strategic importance.
    • Enhanced candidate experience: With their ability to provide immediate responses, chatbots can make the application process more engaging and user-friendly.
    • Data and insights: Chatbots can collect and analyze data from your interactions with candidates. And provide valuable insights into candidate preferences and behavior.
    • Improved compliance: By consistently following predefined rules and guidelines, chatbots can help ensure that hiring processes are fair and compliant with relevant laws and regulations.
    • Cost saving: By automating routine tasks for recruiters, chatbots can help reduce the labor costs associated with hiring.

    Also read: 5 Steps To Create A Remote-First Candidate Experience In Recruitment

    How FaceCode Can Help Improve Your Candidate Experience | AI in recruitment

    For candidates:

    Additionally, candidates can leverage these AI-powered chatbots in a dialog flow manner to carry out various tasks. These tasks include the following:

    • Personalized greetings: By using a candidate’s name and other personal information, chatbots can create a friendly, personalized experience.
    • Job search: They can help candidates search for jobs based on specific criteria.
    • Create a candidate profile: These AI-powered chatbots can guide candidates through the process of creating a profile. Thus, making it easier for them to apply for jobs.
    • Upload resume: Chatbots can instruct candidates on uploading their resume, eliminating potential confusion.
    • Apply for a job: They can streamline the application process, making it easier and faster for candidates to apply for jobs.
    • Check application status: Chatbots can provide real-time updates on a candidate’s application status.
    • Schedule interviews: They can match candidate and interviewer availability to schedule interviews, simplifying the process.

    For hiring managers:

    These can also be utilized by your tech hiring teams for various purposes, such as:

    • Create requisition: Chatbots can guide hiring managers through the process of creating a job requisition.
    • Create offers: They can assist in generating job offers, ensuring all necessary information is included.
    • Access requisition and offers: Using chatbots can provide hiring managers with easy access to job requisitions and offers.
    • Check on onboarding tasks: Chatbots can help track onboarding tasks, ensuring nothing is missed.

    Other AI recruiting technologies can also enhance the hiring process for candidates and hiring teams in the following ways:

    For candidates:

    1. Tailor-made resumes and cover letters using generative AI: Generative AI can help candidates create custom resumes and cover letters, increasing their chances of standing out.
    2. Simplifying the application process: AI-powered recruiting tools can simplify the application process, allowing candidates to apply for jobs with just a few clicks.
    3. Provide similar job recommendations: AI can analyze candidates’ skills, experiences, and preferences to recommend similar jobs they might be interested in.

    For recruiters:

    • Find the best candidate: AI algorithms can analyze large amounts of data to help you identify the candidates most likely to succeed in a given role.
    • Extract key skills from candidate job applications: Save a significant amount of time and effort by using AI-based recruiting software to quickly analyze job applications to identify key skills, thereby, speeding up the screening process.
    • Take feedback from rejected candidates & share similar job recommendations: AI can collect feedback from rejected candidates for you to improve future hiring processes and recommend other suitable roles to the candidate.

    These enhancements not only streamline the hiring process but also improve the quality of hires, reduce hiring biases, and improve the experience for everyone involved. The use of AI in hiring can indeed take it to the next level.

    Where is AI in recruitment headed?

    AI can dramatically reshape the recruitment landscape with the following key advancements:

    1. Blockchain-based background verification:

    Blockchain technology, renowned for its secure, transparent, and immutable nature, can revolutionize background checks. This process which can take anywhere from between a day to several weeks today for a single recruiter to do can be completed within a few clicks resulting in:

    • Streamlined screening process: Blockchain can store, manage, and share candidates’ credentials and work histories. Thereby speeding up the verification and screening process. This approach eliminates the need for manual background checks. And leads to freeing up a good amount of time for you to focus on more important tasks.
    • Enhanced trust and transparency: With blockchain, candidates, and employers can trust the validity of the information shared due to the nature of the technology. The cryptographic protection of blockchain ensures the data is tamper-proof, and decentralization provides transparency.
    • Improved data accuracy and reliability: Since the blockchain ledger is immutable, it enhances the accuracy and reliability of the data stored. This can minimize the risks associated with false information on candidates’ resumes.
    • Faster onboarding: A swift and reliable verification process means candidates can be onboarded more quickly. Thereby, improving the candidate experience and reducing the time-to-hire.
    • Expanded talent pool: With blockchain, it’s easier and quicker to verify the credentials of candidates globally, thereby widening the potential talent pool.

    2. Immersive experiences using virtual reality (VR):

    VR can provide immersive experiences that enhance various aspects of the tech recruitment process:

    • Interactive job previews: VR can allow potential candidates to virtually “experience” a day i.e., life at your company. This provides a more accurate and engaging job preview than traditional job descriptions.
    • Virtual interviews and assessments: You can use VR to conduct virtual interviews or assessments. You can also evaluate candidates in a more interactive and immersive setting. This can be particularly useful for roles that require specific spatial or technical skills.
    • Virtual onboarding programs: New hires can take a virtual tour of the office, meet their colleagues, and get acquainted with their tasks, all before their first day. This can significantly enhance the onboarding experience and help new hires feel more prepared.
    • Immersive learning experiences: VR can provide realistic, immersive learning experiences for job-specific training or to enhance soft skills. These could be used during the recruitment process or for ongoing employee development.

    Also read: 6 Strategies To Enhance Candidate Engagement In Tech Hiring (+ 3 Unique Examples)

    AI + Recruiters: It’s all about the balance!

    To summarize, AI in recruitment is a double-edged sword, carrying both promise and potential problems. The key lies in how recruiters use this technology, leveraging its benefits while vigilantly managing its risks. AI isn’t likely to replace recruiters or HR teams in the near future. Instead, you should leverage this tool to positively impact the entire hiring lifecycle.

    With the right balance and careful management, AI can streamline hiring processes. It can create better candidate experiences, and ultimately lead to better recruitment decisions. Recruiters should continually experiment with and explore generative AI. To devise creative solutions, resulting in more successful hiring and the perfect fit for every open role.

    Looking For A Mettl Alternative? Let’s Talk About HackerEarth

    “Every hire is an investment for a company. A good hire will give you a higher ROI; if it is a bad hire, it will cost you a lot of time and money.”

    Especially in tech hiring!

    An effective tech recruitment process helps you attract the best talents, reduce hiring costs, and enhance company culture and reputation.

    Businesses increasingly depend on technical knowledge to compete in today’s fast-paced, technologically driven world. Online platforms that provide technical recruiting solutions have popped up to assist companies in finding and employing top talent in response to this demand.

    The two most well-known platforms in this field are HackerEarth and Mettl. To help businesses make wise choices for their technical employment requirements, we will compare these two platforms’ features, benefits, and limitations in this article.

    This comparison of Mettl alternative, HackerEarth and Mettl itself, will offer helpful information to help you make the best decision, whether you’re a small company trying to expand your tech staff or a massive organization needing a simplified recruiting process.

    HackerEarth

    HackerEarth is based in San Francisco, USA, and offers enterprise software to aid companies with technical recruitment. Its services include remote video interviewing and technical skill assessments that are commonly used by organizations.

    HackerEarth also provides a platform for developers to participate in coding challenges and hackathons. In addition, it provides tools for technical hiring such as coding tests, online interviews, and applicant management features. The hiring solutions provided by HackerEarth aid companies assess potential employees’ technical aptitude and select the best applicants for their specialized positions.

    Mettl

    Mettl, on the other hand, offers a range of assessment solutions for various industries, including IT, banking, healthcare, and retail. It provides online tests for coding, linguistic ability, and cognitive skills. The tests offered by Mettl assist employers find the best applicants for open positions and make data-driven recruiting choices. Additionally, Mettl provides solutions for personnel management and staff training and development.

    Why should you go for HackerEarth over Mercer Mettl?

    Here's why HackerEarth is a great Mettl Alternative!

    Because HackerEarth makes technical recruiting easy and fast, you must consider HackerEarth for technical competence evaluations and remote video interviews. It goes above and beyond to provide you with a full range of functions and guarantee the effectiveness of the questions in the database. Moreover, it is user-friendly and offers fantastic testing opportunities.

    The coding assessments by HackerEarth guarantee the lowest time consumption and maximum efficiency. It provides a question bank of more than 17,000 coding-related questions and automated test development so that you can choose test questions as per the job role.

    As a tech recruiter, you may need a clear understanding of a candidate’s skills. With HackerEarth’s code replay capability and insight-rich reporting on a developer’s performance, you can hire the right resource for your company.

    Additionally, HackerEarth provides a more in-depth examination of your recruiting process so you can continuously enhance your coding exams and develop a hiring procedure that leads the industry.

    HackerEarth and Mercer Mettl are the two well-known online tech assessment platforms that provide tools for managing and performing online examinations. We will examine the major areas where HackerEarth outperforms Mettl, thereby proving to be a great alternative to Mettl, in this comparison.

    Also read: What Makes HackerEarth The Tech Behind Great Tech Teams

    HackerEarth Vs Mettl

    Features and functionality

    HackerEarth believes in upgrading itself and providing the most effortless navigation and solutions to recruiters and candidates.

    HackerEarth provides various tools and capabilities to create and administer online tests, such as programming tests, multiple-choice questions, coding challenges, and more. The software also has remote proctoring, automatic evaluation, and plagiarism detection tools (like detecting the use of ChatGPT in coding assessments). On the other side, Mettl offers comparable functionality but has restricted capabilities for coding challenges and evaluations.

    Test creation and administration

    HackerEarth: It has a user-friendly interface that is simple to use and navigate. It makes it easy for recruiters to handle evaluations without zero technical know-how. The HackerEarth coding platform is also quite flexible and offers a variety of pre-built exams, including coding tests, aptitude tests, and domain-specific examinations. It has a rich library of 17,000+ questions across 900+ skills, which is fully accessible by the hiring team. Additionally, it allows you to create custom questions yourself or use the available question libraries.

    Also read: How To Create An Automated Assessment With HackerEarth

    Mettl: It can be challenging for a hiring manager to use Mettl efficiently since Mettl provides limited assessment and question libraries. Also, their team creates the test for them rather than giving access to hiring managers. This results in a higher turnaround time and reduces test customization possibilities since the request has to go back to the team, they have to make the changes, and so forth.

    Reporting and analytics

    HackerEarth: You may assess applicant performance and pinpoint areas for improvement with the help of HackerEarth’s full reporting and analytics tools. Its personalized dashboards, visualizations, and data exports simplify evaluating assessment results and real-time insights.

    Most importantly, HackerEarth includes code quality scores in candidate performance reports, which lets you get a deeper insight into a candidate’s capabilities and make the correct hiring decision. Additionally, HackerEarth provides a health score index for each question in the library to help you add more accuracy to your assessments. The health score is based on parameters like degree of difficulty, choice of the programming language used, number of attempts over the past year, and so on.

    Mettl: Mettl online assessment tool provides reporting and analytics. However, there may be only a few customization choices available. Also, Mettle does not provide code quality assurance which means hiring managers have to check the whole code manually. There is no option to leverage question-based analytics and Mettl does not include a health score index for its question library.

    Adopting this platform may be challenging if you want highly customized reporting and analytics solutions.

    Also read: HackerEarth Assessments + The Smart Browser: Formula For Bulletproof Tech Hiring

    Security and data privacy

    HackerEarth: The security and privacy of user data are top priorities at HackerEarth. The platform protects data in transit and at rest using industry-standard encryption. Additionally, all user data is kept in secure, constantly monitored data centers with stringent access controls.

    Along with these security measures, HackerEarth also provides IP limitations, role-based access controls, and multi-factor authentication. These features ensure that all activity is recorded and audited and that only authorized users can access sensitive data.

    HackerEarth complies with several data privacy laws, such as GDPR and CCPA. The protection of candidate data is ensured by this compliance, which also enables businesses to fulfill their legal and regulatory responsibilities.

    Mettl: The security and data privacy features of Mettl might not be as strong as those of HackerEarth. The platform does not provide the same selection of security measures, such as IP limitations or multi-factor authentication. Although the business asserts that it complies with GDPR and other laws, it cannot offer the same amount of accountability and transparency as other platforms.

    Even though both HackerEarth and Mettl include security and data privacy measures, the Mettle alternative, HackerEarth’s platform is made to be more thorough, open, and legal. By doing this, businesses can better guarantee candidate data’s security and ability to fulfill legal and regulatory requirements.

    Pricing and support

    HackerEarth: To meet the demands of businesses of all sizes, HackerEarth offers a variety of customizable pricing options. The platform provides yearly and multi-year contracts in addition to a pay-as-you-go basis. You can select the price plan that best suits their demands regarding employment and budget.

    HackerEarth offers chat customer support around the clock. The platform also provides a thorough knowledge base and documentation to assist users in getting started and troubleshooting problems.

    Mettl: The lack of price information on Mettl’s website might make it challenging for businesses to decide whether the platform fits their budget. The organization also does not have a pay-as-you-go option, which might be problematic.

    Mettl offers phone and emails customer assistance. However, the business website lacks information on support availability or response times. This lack of transparency may be an issue if you need prompt and efficient help.

    User experience

    HackerEarth: The interface on HackerEarth is designed to be simple for both recruiters and job seekers. As a result of the platform’s numerous adjustable choices for test creation and administration, you may design exams specifically suited to a job role. Additionally, the platform provides a selection of question types and test templates, making it simple to build and take exams effectively.

    In terms of the candidate experience, HackerEarth provides a user-friendly interface that makes navigating the testing procedure straightforward and intuitive for applicants. As a result of the platform’s real-time feedback and scoring, applicants may feel more motivated and engaged during the testing process. The platform also provides several customization choices, like branding and message, which may assist recruiters in giving prospects a more exciting and tailored experience.

    Mettl: The platform is intended to have a steeper learning curve than others and be more technical. It makes it challenging to rapidly and effectively construct exams and can be difficult for applicants unfamiliar with the platform due to its complex interface.

    Additionally, Mettl does not provide real-time feedback or scoring, which might deter applicants from participating and being motivated by the testing process.

    Also read: 6 Strategies To Enhance Candidate Engagement In Tech Hiring (+ 3 Unique Examples)

    User reviews and feedback

    According to G2, HackerEarth and Mettl have 4.4 reviews out of 5. Users have also applauded HackerEarth’s customer service. Many agree that the staff members are friendly and quick to respond to any problems or queries. Overall, customer evaluations and feedback for HackerEarth point to the platform as simple to use. Both recruiters and applicants find it efficient.

    Mettl has received mixed reviews from users, with some praising the platform for its features and functionality and others expressing frustration with its complex and technical interface.

    Free ebook to help you choose between Mettl and Mettle alternative, HackerEarth

    May the best “brand” win!

    Recruiting and selecting the ideal candidate demands a significant investment of time, attention, and effort.

    This is where tech recruiting platforms like HackerEarth and Mettl have got you covered. They help streamline the whole process.Both HackerEarth and Mettl provide a wide variety of advanced features and capabilities for tech hiring.

    We think HackerEarth is the superior choice. Especially, when contrasting the two platforms in terms of their salient characteristics and functioning. But, we may be biased!

    So don’t take our word for it. Sign up for a free trial and check out HackerEarth’s offerings for yourself!

    HackerEarth Assessments + The Smart Browser: Formula For Bulletproof Tech Hiring

    Let’s face it—cheating on tests is quite common. While technology has made a lot of things easier in tech recruiting, it has also left the field wide open to malpractice. A 2020 report by ICAI shows that 32% of undergraduate students have cheated in some form on an online test.

    It’s human nature to want to bend the rules a little bit. Which begs the question, how do you stay on top of cheating, plagiarism, and other forms of malpractice during the assessment process?

    How do you ensure that take-home assessments and remote interviews stay authentic and credible? By relying on enhanced virtual supervision, of course!

    HackerEarth Assessments has always been one step ahead when it comes to remote proctoring which is able to capture the nuances of candidate plagiarism. The recent advancements in technology (think generative AI) needed more robust proctoring features, so we went ahead and built The HackerEarth Smart Browser to ensure our assessments remain as foolproof as ever.

    Presenting to you, the latest HackerEarth proctoring fix - The Smart Browser

    Our Smart Browser is the chocolatey version of a plain donut when compared to a regular web browser. It is extra effective and comes packed with additional remote proctoring capabilities to increase the quality of your screening assessments.

    The chances of a candidate cheating on a HackerEarth technical assessment are virtually zero with the latest features! Spilling all our secrets to show you why -

    1. Sealed-off testing environment makes proctoring simpler

    Sealed-off testing environment makes proctoring simpler

    To get started with using the Smart Browser, enable the Smart Browser setting as shown above. This setting is available under the test proctoring section on the test overview page.

    As you can see, several other proctoring settings such as disabling copy-paste, restricting candidates to full-screen mode, and logout on leaving the test interface are selected automatically.Now, every candidate you invite to take the assessment will only be able to do so through the Smart Browser. Candidates are prompted to download the Smart Browser from the link shared in the test invite mail.When the candidate needs to click on the ‘start test’ button on the launch test screen, it opens in the Smart Browser. The browser also prompts the candidate to switch to full-screen mode. Now, all candidates need to do is sign in and attempt the test, as usual.
    Also read: 6 Ways Candidates Try To Outsmart A Remote Proctored Assessment

    2. Eagle-eyed online test monitoring leaves no room for error

    Eagle-eyed online test monitoring with the smart browser leaves no room for errorOur AI-enabled Smart Browser takes frequent snapshots via the webcam, throughout the assessment. Consequently, it is impossible to copy-paste code or impersonate a candidate.The browser prevents the following candidate actions and facilitates thorough monitoring of the assessment:
    • Screensharing the test window
    • Keeping other applications open during the test
    • Resizing the test window
    • Taking screenshots of the test window
    • Recording the test window
    • Using malicious keystrokes
    • Viewing OS notifications
    • Running the test window within a virtual machine
    • Operating browser developer tools
    Any candidate actions attempting to switch tabs with the intent to copy-paste or use a generative AI like ChatGPT are shown a warning and captured in the candidate report.HackerEarth’s latest proctoring fixes bulletproof our assessment platform, making it one of the most reliable and accurate sources of candidate hiring in the market today.
    Also read: 4 Ways HackerEarth Flags The Use Of ChatGPT In Tech Hiring Assessments

    Experience reliable assessments with the Smart Browser!

    There you have it - our newest offering that preserves the integrity of coding assessments and enables skill-first hiring, all in one go. Recruiters and hiring managers, this is one feature that you can easily rely on and can be sure that every candidate’s test score is a result of their ability alone.Curious to try out the Smart Browser? Well, don’t take our word for it. Head over here to check it out for yourself!

    We also love hearing from our customers so don’t hesitate to leave us any feedback you might have.

    Until then, happy hiring!
    View all

    What is Headhunting In Recruitment?: Types & How Does It Work?

    In today’s fast-paced world, recruiting talent has become increasingly complicated. Technological advancements, high workforce expectations and a highly competitive market have pushed recruitment agencies to adopt innovative strategies for recruiting various types of talent. This article aims to explore one such recruitment strategy – headhunting.

    What is Headhunting in recruitment?

    In headhunting, companies or recruitment agencies identify, engage and hire highly skilled professionals to fill top positions in the respective companies. It is different from the traditional process in which candidates looking for job opportunities approach companies or recruitment agencies. In headhunting, executive headhunters, as recruiters are referred to, approach prospective candidates with the hiring company’s requirements and wait for them to respond. Executive headhunters generally look for passive candidates, those who work at crucial positions and are not on the lookout for new work opportunities. Besides, executive headhunters focus on filling critical, senior-level positions indispensable to companies. Depending on the nature of the operation, headhunting has three types. They are described later in this article. Before we move on to understand the types of headhunting, here is how the traditional recruitment process and headhunting are different.

    How do headhunting and traditional recruitment differ from each other?

    Headhunting is a type of recruitment process in which top-level managers and executives in similar positions are hired. Since these professionals are not on the lookout for jobs, headhunters have to thoroughly understand the hiring companies’ requirements and study the work profiles of potential candidates before creating a list.

    In the traditional approach, there is a long list of candidates applying for jobs online and offline. Candidates approach recruiters for jobs. Apart from this primary difference, there are other factors that define the difference between these two schools of recruitment.

    AspectHeadhuntingTraditional RecruitmentCandidate TypePrimarily passive candidateActive job seekersApproachFocused on specific high-level rolesBroader; includes various levelsScopeproactive outreachReactive: candidates applyCostGenerally more expensive due to expertise requiredTypically lower costsControlManaged by headhuntersManaged internally by HR teams

    All the above parameters will help you to understand how headhunting differs from traditional recruitment methods, better.

    Types of headhunting in recruitment

    Direct headhunting: In direct recruitment, hiring teams reach out to potential candidates through personal communication. Companies conduct direct headhunting in-house, without outsourcing the process to hiring recruitment agencies. Very few businesses conduct this type of recruitment for top jobs as it involves extensive screening across networks outside the company’s expanse.

    Indirect headhunting: This method involves recruiters getting in touch with their prospective candidates through indirect modes of communication such as email and phone calls. Indirect headhunting is less intrusive and allows candidates to respond at their convenience.Third-party recruitment: Companies approach external recruitment agencies or executive headhunters to recruit highly skilled professionals for top positions. This method often leverages the company’s extensive contact network and expertise in niche industries.

    How does headhunting work?

    Finding highly skilled professionals to fill critical positions can be tricky if there is no system for it. Expert executive headhunters employ recruitment software to conduct headhunting efficiently as it facilitates a seamless recruitment process for executive headhunters. Most software is AI-powered and expedites processes like candidate sourcing, interactions with prospective professionals and upkeep of communication history. This makes the process of executive search in recruitment a little bit easier. Apart from using software to recruit executives, here are the various stages of finding high-calibre executives through headhunting.

    Identifying the role

    Once there is a vacancy for a top job, one of the top executives like a CEO, director or the head of the company, reach out to the concerned personnel with their requirements. Depending on how large a company is, they may choose to headhunt with the help of an external recruiting agency or conduct it in-house. Generally, the task is assigned to external recruitment agencies specializing in headhunting. Executive headhunters possess a database of highly qualified professionals who work in crucial positions in some of the best companies. This makes them the top choice of conglomerates looking to hire some of the best talents in the industry.

    Defining the job

    Once an executive headhunter or a recruiting agency is finalized, companies conduct meetings to discuss the nature of the role, how the company works, the management hierarchy among other important aspects of the job. Headhunters are expected to understand these points thoroughly and establish a clear understanding of their expectations and goals.

    Candidate identification and sourcing

    Headhunters analyse and understand the requirements of their clients and begin creating a pool of suitable candidates from their database. The professionals are shortlisted after conducting extensive research of job profiles, number of years of industry experience, professional networks and online platforms.

    Approaching candidates

    Once the potential candidates have been identified and shortlisted, headhunters move on to get in touch with them discreetly through various communication channels. As such candidates are already working at top level positions at other companies, executive headhunters have to be low-key while doing so.

    Assessment and Evaluation

    In this next step, extensive screening and evaluation of candidates is conducted to determine their suitability for the advertised position.

    Interviews and negotiations

    Compensation is a major topic of discussion among recruiters and prospective candidates. A lot of deliberation and negotiation goes on between the hiring organization and the selected executives which is facilitated by the headhunters.

    Finalizing the hire

    Things come to a close once the suitable candidates accept the job offer. On accepting the offer letter, headhunters help finalize the hiring process to ensure a smooth transition.

    The steps listed above form the blueprint for a typical headhunting process. Headhunting has been crucial in helping companies hire the right people for crucial positions that come with great responsibility. However, all systems have a set of challenges no matter how perfect their working algorithm is. Here are a few challenges that talent acquisition agencies face while headhunting.

    Common challenges in headhunting

    Despite its advantages, headhunting also presents certain challenges:

    Cost Implications: Engaging headhunters can be more expensive than traditional recruitment methods due to their specialized skills and services.

    Time-Consuming Process: While headhunting can be efficient, finding the right candidate for senior positions may still take time due to thorough evaluation processes.

    Market Competition: The competition for top talent is fierce; organizations must present compelling offers to attract passive candidates away from their current roles.

    Although the above mentioned factors can pose challenges in the headhunting process, there are more upsides than there are downsides to it. Here is how headhunting has helped revolutionize the recruitment of high-profile candidates.

    Advantages of Headhunting

    Headhunting offers several advantages over traditional recruitment methods:

    Access to Passive Candidates: By targeting individuals who are not actively seeking new employment, organisations can access a broader pool of highly skilled professionals.

    Confidentiality: The discreet nature of headhunting protects both candidates’ current employment situations and the hiring organisation’s strategic interests.

    Customized Search: Headhunters tailor their search based on the specific needs of the organization, ensuring a better fit between candidates and company culture.

    Industry Expertise: Many headhunters specialise in particular sectors, providing valuable insights into market dynamics and candidate qualifications.

    Conclusion

    Although headhunting can be costly and time-consuming, it is one of the most effective ways of finding good candidates for top jobs. Executive headhunters face several challenges maintaining the g discreetness while getting in touch with prospective clients. As organizations navigate increasingly competitive markets, understanding the nuances of headhunting becomes vital for effective recruitment strategies. To keep up with the technological advancements, it is better to optimise your hiring process by employing online recruitment software like HackerEarth, which enables companies to conduct multiple interviews and evaluation tests online, thus improving candidate experience. By collaborating with skilled headhunters who possess industry expertise and insights into market trends, companies can enhance their chances of securing high-caliber professionals who drive success in their respective fields.

    A Comprehensive Guide to External Sources of Recruitment

    The job industry is not the same as it was 30 years ago. Progresses in AI and automation have created a new work culture that demands highly skilled professionals who drive innovation and work efficiently. This has led to an increase in the number of companies reaching out to external sources of recruitment for hiring talent. Over the years, we have seen several job aggregators optimise their algorithms to suit the rising demand for talent in the market and new players entering the talent acquisition industry. This article will tell you all about how external sources of recruitment help companies scout some of the best candidates in the industry, the importance of external recruitment in organizations across the globe and how it can be leveraged to find talent effectively.

    Understanding external sources of recruitment

    External sources refer to recruitment agencies, online job portals, job fairs, professional associations and any other organizations that facilitate seamless recruitment. When companies employ external recruitment sources, they access a wider pool of talent which helps them find the right candidates much faster than hiring people in-house. They save both time and effort in the recruitment process.

    Online job portals

    Online resume aggregators like LinkedIn, Naukri, Indeed, Shine, etc. contain a large database of prospective candidates. With the advent of AI, online external sources of recruitment have optimised their algorithms to show the right jobs to the right candidates. Once companies figure out how to utilise job portals for recruitment, they can expedite their hiring process efficiently.

    Social Media

    Ours is a generation that thrives on social media. To boost my IG presence, I have explored various strategies, from getting paid Instagram users to optimizing post timing and engaging with my audience consistently. Platforms like FB an IG have been optimized to serve job seekers and recruiters alike. The algorithms of social media platforms like Facebook and Instagram have been optimised to serve job seekers and recruiters alike. Leveraging them to post well-placed ads for job listings is another way to implement external sources of recruitment strategies.

    Employee Referrals

    Referrals are another great external source of recruitment for hiring teams. Encouraging employees to refer their friends and acquaintances for vacancies enables companies to access highly skilled candidates faster.

    Campus Recruitment

    Hiring freshers from campus allows companies to train and harness new talent. Campus recruitment drives are a great external recruitment resource where hiring managers can expedite the hiring process by conducting screening processes in short periods.

    Recruitment Agencies

    Companies who are looking to fill specific positions with highly skilled and experienced candidates approach external recruitment agencies or executive headhunters to do so. These agencies are well-equipped to look for suitable candidates and they also undertake the task of identifying, screening and recruiting such people.

    Job Fairs

    This is a win-win situation for job seekers and hiring teams. Job fairs allow potential candidates to understand how specific companies work while allowing hiring managers to scout for potential candidates and proceed with the hiring process if possible.

    Importance of External Recruitment

    The role of recruitment agencies in talent acquisition is of paramount importance. They possess the necessary resources to help companies find the right candidates and facilitate a seamless hiring process through their internal system. Here is how external sources of recruitment benefit companies.

    Diversity of Skill Sets

    External recruitment resources are a great way for companies to hire candidates with diverse professional backgrounds. They possess industry-relevant skills which can be put to good use in this highly competitive market.

    Fresh Perspectives

    Candidates hired through external recruitment resources come from varied backgrounds. This helps them drive innovation and run things a little differently, thus bringing in a fresh approach to any project they undertake.

    Access to Specialized Talent

    Companies cannot hire anyone to fill critical roles that require highly qualified executives. This task is assigned to executive headhunters who specialize in identifying and screening high-calibre candidates with the right amount of industry experience. Huge conglomerates and companies seek special talent through external recruiters who have carved a niche for themselves.

    Now that you have learnt the different ways in which leveraging external sources of recruitment benefits companies, let’s take a look at some of the best practices of external recruitment to understand how to effectively use their resources.

    Best Practices for Effective External Recruitment

    Identifying, reaching out to and screening the right candidates requires a robust working system. Every system works efficiently if a few best practices are implemented. For example, hiring through social media platforms requires companies to provide details about their working environment, how the job is relevant to their audience and well-positioned advertisements. The same applies to the other external sources of recruitment. Here is how you can optimise the system to ensure an effective recruitment process.

    Craft Clear and Compelling Job Descriptions

    Detail Responsibilities: Clearly outline the key responsibilities and expectations for the role.

    Highlight Company Culture: Include information about the company’s mission, values, and growth opportunities to attract candidates who align with your organizational culture.

    Leverage Multiple Recruitment Channels

    Diversify Sources: Use a mix of job boards, social media platforms, recruitment agencies, and networking events to maximize reach. Relying on a single source can limit your candidate pool.

    Utilize Industry-Specific Platforms: In addition to general job boards, consider niche job sites that cater to specific industries or skill sets

    Streamline the Application Process

    Simplify Applications: Ensure that the application process is user-friendly. Lengthy or complicated forms can deter potential candidates from applying.

    Mobile Optimization: Many candidates use mobile devices to apply for jobs, so ensure your application process is mobile-friendly.

    Engage in Proactive Sourcing

    Reach Out to Passive Candidates: Actively seek out candidates who may not be actively looking for a job but could be a great fit for your organization. Use LinkedIn and other professional networks for this purpose.

    Maintain a Talent Pool: Keep a database of previous applicants and strong candidates for future openings, allowing you to reach out when new roles become available.

    Utilize Social Media Effectively

    Promote Job Openings: Use social media platforms like LinkedIn, Facebook, and Twitter to share job postings and engage with potential candidates. This approach can also enhance your employer brand

    Conduct Background Checks: There are several ways of learning about potential candidates. Checking out candidate profiles on job boards like LinkedIn or social media platforms can give companies a better understanding of their potential candidates, thus confirming whether they are the right fit for the organization.

    Implement Data-Driven Recruitment

    Analyze Recruitment Metrics: Track key metrics such as time-to-hire, cost-per-hire, and source effectiveness. This data can help refine your recruitment strategies over time. Using external hiring software like HackeEarth can streamline the recruitment process, thus ensuring quality hires without having to indulge internal resources for the same.

    Use Predictive Analytics: In this age of fast paced internet, everybody makes data-driven decisions. Using predictive analytics to study employee data will help companies predict future trends, thus facilitating a productive hiring process.

    Conclusion

    External sources of recruitment play a very important role in an organization’s talent acquisition strategy. By employing various channels of recruitment such as social media, employee referrals and campus recruitment drives, companies can effectively carry out their hiring processes. AI-based recruitment management systems also help in the process. Implementing best practices in external recruitment will enable organizations to enhance their hiring processes effectively while meeting their strategic goals.

    Progressive Pre-Employment Assessment - A Complete Guide

    The Progressive Pre-Employment Assessment is a crucial step in the hiring process, as it evaluates candidates through various dimensions including cognitive abilities, personality traits, and role-specific skills.

    While employers and recruiters have this in the palm of their hand, candidates who master it will successfully navigate the assessment and have a higher chance of landing that dream job. But what does it entail in the first place?

    Candidates can expect to undergo tests that assess verbal, numerical, and work style capabilities, as well as a personality assessment. Hence, understanding the structure and purpose of the Progressive Pre-Employment Assessment can give candidates a competitive edge. But before one tackles online tests, we must first dissect what this assessment is and what it consists of.

    The evolution of pre-employment assessments

    Pre-employment assessments have undergone significant changes over the decades, from rudimentary tests to sophisticated, modern evaluations. Let’s put the two side by side.

    • Traditional methods:

      Initially, pre-employment assessments focused on basic skills and educational qualifications. These paper-based tests primarily assessed cognitive and verbal abilities, without any conclusions about the candidates’ output in very specific situations.

    • Modern techniques:

      Today, online assessments are prevalent, evaluating a variety of dimensions, including cognitive skills, personality traits, and behavioral evaluations. These tools offer a more comprehensive view of a candidate's job performance potential, while, at the same time, saving precious time for both parties involved.

    In today’s competitive job market, progressive pre-employment assessments play a crucial as they not only measure technical skills and knowledge but also provide insights into a candidate's ethical bias, cultural fit, and communication skills.

    Likewise, assessment tests have evolved to include situational judgment tests and culture fit analyses, which are pivotal in assessing the suitability of a candidate for specific roles. And this isn’t just in terms of skillsets—they help in identifying candidates who align well with the company's values and working environment.

    This is mainly for the tests’ ability to accurately gauge a candidate's interpersonal skills and emotional intelligence, which are essential for roles that require teamwork and client interactions.

    What are progressive pre-employment assessments?

    Progressive pre-employment assessments are structured evaluations designed to judge a candidate’s abilities and fit for a role at Progressive Insurance. Unlike traditional aptitude tests, these assessments encompass various elements such as cognitive abilities, situational judgments, and personality traits.

    These tests typically include verbal and numerical reasoning sections, as well as work style assessments that gauge behavioral tendencies. Through this merger of multiple dimensions, Progressive seeks to understand not just the skills and knowledge of the candidate, but also their ethical perspectives and communication skills.

    Components of a progressive assessment strategy

    What sets progressive assessments apart? Well, as most employers just focus on the basic credentials and competencies, the comprehensive assessment strategy at Progressive includes several key components:

    1. Cognitive evaluations: These tests measure candidates' logical reasoning and problem-solving capabilities through verbal, numerical, and abstract reasoning questions.
    2. Personality assessments: These tests evaluate traits and tendencies to understand how a candidate might behave in various workplace scenarios. They aim to provide insight into their ethical bias and interpersonal skills.
    3. Behavioral evaluations: These sections analyze how candidates might act in specific situations, ensuring a good cultural fit and alignment with Progressive's values.
    4. Role-specific skills tests: These assessments focus on the specialized skills required for the position, ensuring the candidate has the necessary technical knowledge and expertise.

    Implementing progressive assessments

    Successful implementation of Progressive Assessments in the hiring process requires designing an effective assessment process and following best practices for administration. This ensures accuracy, better data security, and reliable decision-making. In particular, the implementation hinges on the feasibility of the original design.

    Step 1 --- Designing the assessment process

    Designing an effective Progressive Assessment involves understanding the specific needs of the role and the company's approach to hiring. Each test component — verbal, numerical, and work style — must align with the desired skills and personality traits for the role.

    HR teams need to define clear objectives for each assessment section. This includes establishing what each part aims to evaluate, like the problem-solving or personality assessments. Incorporating legal and policy guidelines ensures the assessments are fair and non-discriminatory, which is crucial for avoiding legal issues.

    Likewise, everaging online assessment tests provides flexibility and efficiency. These tests allow candidates to complete them remotely, easing logistics and scheduling concerns. Ensuring security is also essential, and implementing testing and other recruitment tools can help enhance data security and accuracy.

    Step 2 --- Best practices for assessment administration

    Administering assessments effectively revolves around consistency and fairness. Establish structured guidelines for the administration process to ensure each candidate undergoes the same conditions, promoting reliability. This includes standardizing the timing, environment, and instructions for all assessments.

    Training HR representatives is vital. They should be well-versed in handling the assessments, from initial candidate interactions to evaluating the results. Regular training updates ensure the team remains knowledgeable about best practices and any new tools used in the assessment process.

    Administering assessments also involves maintaining better data security and accuracy. This is achieved by utilizing secure online platforms and ensuring that only authorized personnel have access to sensitive data. Leveraging top API penetration testing tools is one approach to securing candidate data and preserving the integrity of the assessment process.

    Implementing consistent feedback mechanisms for candidates can also improve the process. Providing insights on their performance helps candidates understand their strengths and areas for growth, which reflects positively on the company’s commitment to candidate experience.

    Benefits of progressive assessments

    Progressive assessments offer significant advantages in the hiring process, such as improving the accuracy of hiring decisions and enhancing the overall candidate experience. These benefits help companies find better-fitting candidates and reduce turnover rates.

    1. Improved hiring accuracy

    Progressive pre-employment assessments allow companies to evaluate candidates more comprehensively. By assessing personality traits, cognitive abilities, and ethical biases, employers can identify individuals who align with the company’s values and have the necessary skills for the job.

    For example, personality assessments can pinpoint traits like empathy, communication, and problem-solving abilities. This helps employers select candidates who are not only qualified but also fit well within the team. Evaluating these qualities ensures that new hires can thrive in customer service roles where empathy and effective communication are crucial.

    Moreover, using tools like the DDI Adaptive Reasoning Test helps to simulate real job tasks. This gives employers deeper insights into a candidate's capability to handle job-specific challenges. As a result, the company is more likely to experience lower turnover rates due to better candidate-job fit.

    2. Enhanced candidate experience

    A well-structured assessment process can significantly enhance the candidate experience. Clear instructions,fair testing procedures, and timely feedback create a positive impression of the company. Candidates appreciate transparency and feel valued when the process is designed with their experience in mind.

    Implementing assessments that reflect actual job roles and responsibilities gives candidates a realistic preview of the job. This reduces later dissatisfaction and turnover. Additionally, personality assessments that highlight traits such as confidence and empathy provide a more engaging candidate experience.

    Companies can also strengthen their employer brand by showcasing their commitment to a fair and comprehensive hiring process. Providing resources like practice tests helps candidates feel better prepared and less anxious about the assessment, leading to a more positive perception of the company.

    Common pitfalls in progressive assessments

    Candidates often struggle with the cognitive abilities section, which requires strong analytical skills and problem-solving capabilities. The situational judgment tests can also be tricky as they assess empathy, decision-making, and customer service scenarios. Personality assessments can pose challenges as well, especially for those unsure how to present their personality traits aligned with the job role.

    A significant issue is also misinterpretation of the test's format and expectations. Many find it daunting to navigate through various sections, such as verbal, numerical, and work style assessments. Lastly, some candidates might overlook the legal nuances of personality assessments or document redaction protocols, leading to compliance issues.

    Strategies to overcome challenges

    To tackle cognitive abilities assessments, candidates should engage in consistent practice with sample questions and mock tests. This helps enhance their analytical and problem-solving skills. For situational judgment tests, it is essential to practice empathy and customer service scenarios to develop a better understanding of role-specific challenges.

    In personality assessments, being honest while demonstrating relevant personality traits like being a team player is crucial. Seeking guidance from study materials such as Job Test Prep can provide a realistic testing environment.

    Understanding legal considerations, such as those around document redaction, is important for compliance. Utilizing a document redaction SDK can ensure adherence to required policies. Familiarity with each section's format will aid in navigating the assessments confidently and effectively.

    Trends and innovations in employee assessments

    There is a growing emphasis on AI-powered assessments —these tools analyze vast amounts of data to predict a candidate's job performance, ensuring a more objective and efficient selection process.



    Personality assessments are evolving to include metrics like empathy and communication skills, which are crucial for roles in customer service and other people-centric positions.

    Additionally, gamified assessments, which make the evaluation process engaging, are gaining popularity. They not only assess problem-solving skills but also gauge how candidates perform under pressure.

    Organizations can prepare for the future by integrating cutting-edge technologies into their hiring processes. Investing in training for evaluators to accurately interpret new assessment metrics is crucial. This involves

    understanding how to measure soft skills such as empathy and effective communication.

    Moreover, companies should stay updated on legal requirements to maintain compliance and ensure fair assessment practices.

    Encouraging candidates to focus on developing their personality traits, such as being team players and showing confidence, can also better prepare them for progressive assessments that look beyond technical skills.

    The strategic value of progressive assessments

    Progressive pre-employment assessments rigorously evaluate candidates on multiple fronts, including cognitive abilities, situational judgment, personality fit, and role-specific skills. This multifaceted approach not only helps in identifying the best match for specific roles but also reduces the risk of bad hires.

    By investing in these assessments, companies can significantly enhance their recruitment processes. Consistent use of these tools leads to more informed decision-making, reducing turnover rates and ensuring employee retention.



    Appropriate preparation and implementation of these assessments can streamline the hiring pipeline, saving time and resources. Furthermore, this approach bolsters team performance and aligns employee roles with their strengths, promoting a culture of efficiency and productivity. While Progressive is far from the only company using this approach, they’ve set a standard in terms of looking at candidates holistically and making sure they’re truly ready for the job.

    Frequently Asked Questions

    This section covers common inquiries related to the Progressive Pre-Employment Assessments, including differences from psychometric tests, benefits for small businesses, legal considerations, and the role of technology.

    How do progressive assessments differ from psychometric testing?

    Progressive assessments typically examine a candidate's ethical bias and personality traits. In contrast, psychometric tests focus on cognitive abilities and personality dimensions. The Progressive Pre-Employment Assessment includes verbal, numerical, and work style components, offering a broader evaluation spectrum.

    Can small businesses benefit from implementing progressive assessment strategies?

    Small businesses can gain significant advantages from adopting progressive assessment strategies. These assessments help identify candidates that align closely with the company’s values and culture, reducing turnover rates. Additionally, they provide insights into a candidate's ethical stance and work style, which are crucial for cohesive team dynamics.

    What are the legal considerations when using pre-employment assessments?

    Legal considerations include ensuring compliance with equal employment opportunity laws and avoiding discrimination based on race, gender, or disability. It is essential to validate the assessment tools and ensure they are scientifically proven to be fair. Companies must also maintain transparency about the purpose and usage of the assessments.

    How can technology enhance the effectiveness of progressive assessments?

    Technology can streamline the assessment process by allowing candidates to complete the tests remotely. Advanced analytics help in the accurate interpretation of results, ensuring a better match between the candidate and the job role. Many platforms offer practice tests that mirror the actual assessment, aiding in preparation and reducing test anxiety.

    View all

    Stay Informed with the HackerEarth Blog

    Explore industry insights, expert opinions, and the latest trends in technology, hiring, and innovation.